题目内容
为了对某课题进行研究,用分层抽样方法从三所科研单位A、B、C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人):
(Ⅰ)确定与的值;
(Ⅱ)若从科研单位A、C抽取的人中选2人作专题发言,求这2人都来自科研单位A的概率.
科研单位 | 相关人数 | 抽取人数 |
A | 16 | |
B | 12 | 3 |
C | 8 |
(Ⅱ)若从科研单位A、C抽取的人中选2人作专题发言,求这2人都来自科研单位A的概率.
(Ⅰ),;
(Ⅱ)选中的2人都来自科研单位A的概率为.
(Ⅱ)选中的2人都来自科研单位A的概率为.
试题分析:(Ⅰ)确定与的值,由分层抽样的特点,是按比例抽样,首先计算出各层抽样比,由B中12人抽出3人,故抽样比4:1,可根据抽样比计算出与的值;(Ⅱ)若从科研单位A、C抽取的人中选2人作专题发言,求这2人都来自科研单位A的概率,由(Ⅰ)可知,从科研单位A中抽取4人,从科研单位C中抽取2人,从这6人中选2人作专题发言,求这2人都来自科研单位A的概率,显然符合古典概率的特点,首先计算出从这6人中选2人作专题发言的基本事件数,再计算出这2人都来自科研单位A的基本事件数,由古典概率的求法可求得.
试题解析:(Ⅰ)依题意得,,解得,. 5分
(Ⅱ)记从科研单位A抽取的4人为,从科研单位C抽取的2人为,则从科研单位A、C抽取的6人中选2人作专题发言的基本事件有:
共15种. 8分
记“选中的2人都来自科研单位A”为事件,则事件包含的基本事件有:
共6种. 11分
则.所以选中的2人都来自科研单位A的概率为 12分
练习册系列答案
相关题目