题目内容
数列{an},{bn}的通项公式满足:an•bn=1,且an=n2+3n+2,则数列{bn}的前10项之和是分析:先求出数列{bn}的通项公式,然后写出数列{bn}的前10项之和,利用裂项的方法求和即可.
解答:解:∵an•bn=1
∴bn=
=
∴s10=
+
+ +
+
=(
-
)+(
-
) + +(
-
) +(
-
)=
-
=
故答案为
.
∴bn=
1 |
n2+3n+2 |
1 |
(n+1)(n+2) |
∴s10=
1 |
2×3 |
1 |
3×4 |
1 |
10×11 |
1 |
11×12 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
10 |
1 |
11 |
1 |
11 |
1 |
12 |
1 |
2 |
1 |
12 |
5 |
12 |
故答案为
5 |
12 |
点评:本题考查了数列的求和对于通项公式为
,一般采取裂项的方法求前n项和,属于基础题.
1 |
(n+1)(n+2) |
练习册系列答案
相关题目