题目内容

e1
e2
e3
e4
是某平面内的四个单位向量,其中
e1
e2
e3
e4
的夹角为1350,对这个平面内的任一个向量
V
=x
e1
+ y
e2
,规定经过一次“斜二测变换”得到向量
a
1=x
e3
+
y
2
e4
.设向量
v
=3
e1
-4
e2
,则经过一次“斜二测变换”得到的向量
v1
的模|
v1
|
是(  )
A.13,B.
13
C.
13+6
2
D.
13-6
2
∵对这个平面内的任一个向量
V
=x
e1
+ y
e2

规定经过一次“斜二测变换”得到向量
a
1=x
e3
+
y
2
e4

设向量
v
=3
e1
-4
e2
,则经过一次“斜二测变换”得到的向量
v1

∴向量
v1
=3
e3
-2
e4

∴向量
v1
的模|
v1
|
=
9
e3
2
+4
e
4
2
-12
e3
• 
e4
=
13+12×
2
2
=
13+6
2

故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网