题目内容

知x、y、z均为实数,
(1)若x+y+z=1,求证:++≤3
(2)若x+2y+3z=6,求x2+y2+z2的最小值.
(1)证明略(2)x2+y2+z2的最小值为
(1)证明 因为(++2
≤(12+12+12)(3x+1+3y+2+3z+3)=27.
所以++≤3.                                     7分
(2)解 因为(12+22+32)(x2+y2+z2)
≥(x+2y+3z)2=36,
即14(x2+y2+z2)≥36,
所以x2+y2+z2的最小值为.                               14分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网