题目内容

(2005•静安区一模)若函数y=f(x) (x∈R)满足f(x+2)=f(x),且x∈(-1,1]时,f(x)=|x|.则函数y=f(x)的图象与函数y=log4|x|的图象的交点的个数为(  )
分析:f(x)是个周期为2的周期函数,且是个偶函数,在一个周期(-1,1]上,图象是2条斜率分别为1和-1的线段,且 0≤f(x)≤1,同理得到在其他周期上的图象;
y=log4|x|是偶函数,图象过(1,0),和(4,1),结合图象可得函数y=f(x)的图象与函数y=log4|x|的图象的交点个数.
解答:解:由题意知,函数y=f(x)是个周期为2的周期函数,且是个偶函数,在一个周期(-1,1]上,
图象是2条斜率分别为1和-1的线段,且 0≤f(x)≤1,同理得到在其他周期上的图象.
函数y=log4|x|也是个偶函数,先看他们在[0,+∞)上的交点个数,
则它们总的交点个数是在[0,+∞)上的交点个数
的2倍,在(0,+∞)上,y=log4|x|=log4x,图象过(1,0),和(4,1),是单调增函数,与f(x)交与3个不同点,
∴函数y=f(x)的图象与函数y=log4|x|的图象的交点个数是6个.
故选C.
点评:本题考查函数的周期性、奇偶性、函数图象的对称性,体现数形结合的数学思想.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网