题目内容
(文) (本小题满分12分) 已知递增的等比数列{an}满足a2+a3+a4=28,且a3+2是a2、a4的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=log2an+1,Sn是数列{bn}的前n项和,求使Sn>42+4n成立的n的最小值.
【答案】
【解析】略

练习册系列答案
相关题目
题目内容
(文) (本小题满分12分) 已知递增的等比数列{an}满足a2+a3+a4=28,且a3+2是a2、a4的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=log2an+1,Sn是数列{bn}的前n项和,求使Sn>42+4n成立的n的最小值.
【解析】略