ÌâÄ¿ÄÚÈÝ
ÈçÏÂͼ£¬ÔÚRt¡÷ABCÖУ¬¡ÏCAB=90¡ã£¬|AB|=2,|AC|=,Ò»ÇúÏßE¹ýCµã£¬¶¯µãPÔÚÇúÏßEÉÏÔ˶¯£¬ÇÒ±£³Ö|PA|+|PB|µÄÖµ²»±ä.(1)½¨Á¢Êʵ±µÄ×ø±êϵ£¬ÇóÇúÏßEµÄ·½³Ì;
(2)ÉèµãKÊÇÇúÏßEÉϵÄÒ»¶¯µã£¬ÇóÏ߶ÎKAÖеãµÄ¹ì¼£·½³Ì;
(3)ÈôF(1,)ÊÇÇúÏßEÉϵÄÒ»µã£¬ÉèM¡¢NÊÇÇúÏßEÉϲ»Í¬µÄÁ½µã£¬Ö±ÏßFMºÍFNµÄÇãб½Ç»¥²¹£¬ÊÔÅжÏÖ±ÏßMNµÄбÂÊÊÇ·ñΪ¶¨Öµ?Èç¹ûÊÇ£¬Çó³öÕâ¸ö¶¨Öµ;Èç¹û²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ.
½â£º(1)Èçͼ£¬ÒÔABËùÔÚµÄÖ±ÏßΪxÖᣬÒÔABµÄÖеãΪԵ㽨Á¢Ö±½Ç×ø±êϵ.
ÉèP(x,y),
¡ß|PA|+|PB|=|CA|+|CB|
=+=4Ϊ¶¨Öµ£¬
¡à¶¯µãPµÄ¹ì¼£ÎªÍÖÔ²£¬ÇÒa=2,c=1,b=.
¡àÍÖÔ²EµÄ·½³ÌΪ+=1.
(2)ÉèÍÖÔ²EÉϵĶ¯µãK(x1,y1),Ï߶ÎKAµÄÖеãΪQ(x,y)¡¢A(-1,0),
Ôòx=,y=£¬¼´x1=2x+1,y1=2y.
Òò´Ë=1,¼´(x+)2+=1.
(3)¡ßM¡¢NÊÇÍÖÔ²Éϲ»Í¬µÄÁ½µã£¬ÇÒÖ±ÏßFM¡¢FNµÄÇãб½Ç»¥²¹£¬ÔòÖ±ÏßFM¡¢FNµÄбÂÊ´æÔÚÇÒ²»ÎªÁã.
ÉèÖ±ÏßFMµÄ·½³ÌΪy=k(x-1)+,
ÓÉÏûÈ¥y,ÕûÀíµÃ
(4k2+3)x2-4k(2k-3)x+4k2-12k-3=0. (*)
ÉèM(xM,yM)¡¢N(xN,yN),ÓÖF(1,)ÊÇÖ±ÏßFMÓëÍÖÔ²µÄ½»µã,¡à·½³Ì(*)µÄÁ½¸ö¸ùΪ1¡¢xM.
ÓɸùÓëϵÊýµÄ¹ØϵµÃxM=. ¢Ù
¡ßÖ±ÏßFM¡¢FNµÄÇãб½Ç»¥²¹,¡àÖ±ÏßFNµÄбÂÊΪ-k,ÒÔ-k´úÌæ¢ÙÖеÄkµÃ
xN=. ¢Ú
ÓÖ¡ßyM=k(xM-1)+,
yN=-k(xN-1)+,
¡àyM-yN=k(xM+xN-2)=k(-2)=.¶øxM-xN=.
¡àyM-yN=(xM-xN).
¡àÖ±ÏßMNµÄбÂÊÊǶ¨Öµ£¬Æ䶨ֵΪ.