题目内容
平行六面体ABCD-A1B1C1D1中,底面是菱形,侧棱AA1与AB、AD成等角.求证:(1)对角面BB1D1D是矩形;
(2)对角面AA1C1C^对角面BB1D1D.
答案:
解析:
解析:
如图证明:(1)当ÐA1AB ÐA1AD=90°时,结论显然成立.当ÐA1AB=ÐA1AD¹90°时,过A1作A1E^底面ABCD,垂足为E,连结AE,∵ ÐA1AB=ÐA1AD,可证AE平分ÐBAD,又∵ ABCD是菱形,∴ AC平分ÐBAD.∴ E在AC上.∵ BD^AC,AE为AA1在底面ABCD的射影,∴ AA1^BD,又∵ BB1∥AA1,∴ BB1^BD,即BB1D1D是矩形.
(2)∵ BD^A1A,BD^AC,∴ BD^平面AA1C1C,又BDÌ面BB1D1D,∴ 对角面AA1C1C^对角面BB1D1D.
|
练习册系列答案
相关题目