题目内容
设数列{an}的前n项和为Sn,已知a1=1,Sn=nan-2n(n-1)(n=1,2,3,…).(Ⅰ)求证:数列{an}为等差数列,并分别写出an和Sn关于n的表达式;
(Ⅱ)求
lim |
n→∞ |
1 |
a1a2 |
1 |
a2a3 |
1 |
an-1an |
(Ⅲ)是否存在自然数n,使得S1+
S2 |
2 |
S3 |
3 |
Sn |
n |
分析:(Ⅰ)由题意知an=Sn-Sn-1=nan-(n-1)an-1-4(n-1),从而得到an-an-1=4(n=2,3,4,).由此可知an=4n-3.所以Sn=
(a1+an)n=2n2-n.
(Ⅱ)由题设知
(
+
++
)=
(
+
+
++
)=
(1-
);计算可得答案.
(Ⅲ)由题设条件知
=2n-1,所以S1+
+
++
=1+3+5+7++(2n-1)=n2.由此可知存在满足条件的自然数n=20.
1 |
2 |
(Ⅱ)由题设知
lim |
n→∞ |
1 |
a1a2 |
1 |
a2a3 |
1 |
an-1an |
lim |
n→∞ |
1 |
1×5 |
1 |
5×9 |
1 |
9×13 |
1 |
(4n-7)(4n-3) |
lim |
n→∞ |
1 |
4 |
1 |
4n-3 |
(Ⅲ)由题设条件知
Sn |
n |
S2 |
2 |
S3 |
3 |
Sn |
n |
解答:解:(Ⅰ)当n≥2时,an=Sn-Sn-1=nan-(n-1)an-1-4(n-1),(2分)
得an-an-1=4(n=2,3,4,).(3分)
∴数列{an}是以a1=1为首项,4为公差的等差数列.(4分)
∴an=4n-3.(5分)Sn=
(a1+an)n=2n2-n.(6分)
(Ⅱ)
(
+
++
)=
(
+
+
++
)
=
((
-
)+(
-
)+(
-
)++(
-
))(8分)
=
(1-
)=
.(10分)
(Ⅲ)由Sn=2n2-n得:
=2n-1,(11分)
∴S1+
+
++
=1+3+5+7++(2n-1)=n2.(13分)
令n2=400,得n=20,所以,存在满足条件的自然数n=20.(14分)
得an-an-1=4(n=2,3,4,).(3分)
∴数列{an}是以a1=1为首项,4为公差的等差数列.(4分)
∴an=4n-3.(5分)Sn=
1 |
2 |
(Ⅱ)
lim |
n→∞ |
1 |
a1a2 |
1 |
a2a3 |
1 |
an-1an |
lim |
n→∞ |
1 |
1×5 |
1 |
5×9 |
1 |
9×13 |
1 |
(4n-7)(4n-3) |
=
lim |
n→∞ |
1 |
4 |
1 |
1 |
1 |
5 |
1 |
5 |
1 |
9 |
1 |
9 |
1 |
13 |
1 |
4n-7 |
1 |
4n-3 |
=
lim |
n→∞ |
1 |
4 |
1 |
4n-3 |
1 |
4 |
(Ⅲ)由Sn=2n2-n得:
Sn |
n |
∴S1+
S2 |
2 |
S3 |
3 |
Sn |
n |
令n2=400,得n=20,所以,存在满足条件的自然数n=20.(14分)
点评:本题考查数列性质的综合运用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目