题目内容
已知函数,,若对于任一实数,与的值至少有一个为正数,则实数的取值范围是( )
A.(0,2) B.(0,8) C.(2,8) D.(-∞,0)
【答案】
C
【解析】
试题分析:当m≤0时,显然不成立,当m=0时,因f(0)=1>0,
当m>0时,若,即时结论显然成立;
若时,只要△=4(4-m)2-8m=4(m-8)(m-2)<0即可,即4<m<8,
则0<m<8,故选B.
考点:一元二次函数,一元二次不等式,一元二次方程之间的关系,以及分析问题解决问题的能力.
点评:解本小题的突破口是因为g(x)=mx显然对任一实数x不可能恒为正数,所以应按和分类研究,g(x)的取值,进而判断出f(x)的取值,从而找到解决此问题的途径.
练习册系列答案
相关题目
[番茄花园1] 本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分10分。
若实数、、满足,则称比远离.
(1)若比1远离0,求的取值范围;
(2)对任意两个不相等的正数、,证明:比远离;
(3)已知函数的定义域.任取,等于和中远离0的那个值.写出函数的解析式,并指出它的基本性质(结论不要求证明).
23本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.
已知椭圆的方程为,点P的坐标为(-a,b).
(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足,求点的坐标;
(2)设直线交椭圆于、两点,交直线于点.若,证明:为的中点;
(3)对于椭圆上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆上存在不同的两个交点、满足,写出求作点、的步骤,并求出使、存在的θ的取值范围.
[番茄花园1]22.