ÌâÄ¿ÄÚÈÝ
£¨2013•Çൺһģ£©ÏÂÁÐ˵·¨ÖÐÕýÈ·µÄÊÇ
¢Ù¡°Èôam2£¼bm2£¬Ôòa£¼b¡±µÄÄæÃüÌâΪÕ棻
¢ÚÏßÐԻع鷽³Ì
=
x+
¶ÔÓ¦µÄÖ±ÏßÒ»¶¨¾¹ýÆäÑù±¾Êý¾Ýµã£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬¡£¬£¨xn£¬ynÖеÄÒ»¸öµã£»
¢ÛÃüÌâ¡°?x¡ÊR£¬x2+x+1£¼0¡±µÄ·ñ¶¨ÊÇ¡°?x¡ÊR£¬x2+x+1¡Ý0¡±£»
¢ÜÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£¨n+1£©£¨n+2£©¡£¨n+n£©=2n.1.3¡£¨2n-1£©£¨n¡ÊN*£©Ê±£¬´Ó¡°n=k¡±µ½¡°n=k+1¡±µÄÖ¤Ã÷ÖУ¬×ó±ßÐèÔö¼ÓµÄÒ»¸öÒòʽÊÇ2£¨2k+1£©£®
¢Û¢Ü
¢Û¢Ü
£¨°ÑËùÓÐÕýȷ˵·¨µÄÐòºÅ¶¼ÌîÉÏ£©£®¢Ù¡°Èôam2£¼bm2£¬Ôòa£¼b¡±µÄÄæÃüÌâΪÕ棻
¢ÚÏßÐԻع鷽³Ì
y |
b |
a |
¢ÛÃüÌâ¡°?x¡ÊR£¬x2+x+1£¼0¡±µÄ·ñ¶¨ÊÇ¡°?x¡ÊR£¬x2+x+1¡Ý0¡±£»
¢ÜÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£¨n+1£©£¨n+2£©¡£¨n+n£©=2n.1.3¡£¨2n-1£©£¨n¡ÊN*£©Ê±£¬´Ó¡°n=k¡±µ½¡°n=k+1¡±µÄÖ¤Ã÷ÖУ¬×ó±ßÐèÔö¼ÓµÄÒ»¸öÒòʽÊÇ2£¨2k+1£©£®
·ÖÎö£º¶Ô¢Ù£¬Ð´³öÃüÌâµÄÄæÃüÌ⣬ÅжÏÆäÕæ¼Ù¼´¿É£»
¶Ô¢Ú£¬¸ù¾Ý»Ø¹é·ÖÎö»ù±¾Ë¼ÏëÅжϢÚÊÇ·ñÕýÈ·£»
¶Ô¢Û£¬ÀûÓÃÌسÆÃüÌâµÄ·ñ¶¨ÊÇÈ«³ÆÃüÌâÀ´ÅжÏÊÇ·ñÕýÈ·£»
¶Ô¢Ü£¬¸ù¾ÝÊýѧ¹éÄÉ·¨£¬Çó³ö´Ó¡°n=k¡±µ½¡°n=k+1¡±µÄÖ¤Ã÷ÖУ¬×ó±ßÔö¼ÓµÄÒòʽ£¬»¯¼òÑéÖ¤¼´¿É£®
¶Ô¢Ú£¬¸ù¾Ý»Ø¹é·ÖÎö»ù±¾Ë¼ÏëÅжϢÚÊÇ·ñÕýÈ·£»
¶Ô¢Û£¬ÀûÓÃÌسÆÃüÌâµÄ·ñ¶¨ÊÇÈ«³ÆÃüÌâÀ´ÅжÏÊÇ·ñÕýÈ·£»
¶Ô¢Ü£¬¸ù¾ÝÊýѧ¹éÄÉ·¨£¬Çó³ö´Ó¡°n=k¡±µ½¡°n=k+1¡±µÄÖ¤Ã÷ÖУ¬×ó±ßÔö¼ÓµÄÒòʽ£¬»¯¼òÑéÖ¤¼´¿É£®
½â´ð£º½â£»¶Ô¢Ù£¬ÃüÌâµÄÄæÃüÌâÊÇ£¬a£¼b£¬Ôòam2£¼bm2£¬¡ßm2=0ʱ²»³ÉÁ¢£¬¡àÄæÃüÌâÊǼÙÃüÌ⣬¹Ê¢Ù´íÎó£»
¶Ô¢Ú£¬¸ù¾Ý»Ø¹éÖ±Ïß·½³ÌÖУ¬ÀûÓÃ×îС¶þ³Ë·¨Çó½â»Ø¹éϵÊý£¬¡à»Ø¹éÖ±Ïß²»Ò»¶¨¾¹ýÑù±¾Öеĵ㣬¹Ê¢Ú´íÎó£»
¶Ô¢Û£¬¸ù¾ÝÌسÆÃüÌâµÄ·ñ¶¨ÊÇÈ«³ÆÃüÌ⣬¡à¡°?x¡ÊR£¬x2+x+1£¼0¡±µÄ·ñ¶¨ÊÇ¡°?x¡ÊR£¬x2+x+1¡Ý0¡±£¬¡à¢ÛÕýÈ·£»
¶Ô¢Ü£¬´Ó¡°n=k¡±µ½¡°n=k+1¡±µÄÖ¤Ã÷ÖУ¬×ó±ßÐèÔö¼ÓÒòʽ
=2£¨2k+1£©£¬¡à¢ÜÕýÈ·£®
¹Ê´ð°¸ÊÇ¢Û¢Ü
¶Ô¢Ú£¬¸ù¾Ý»Ø¹éÖ±Ïß·½³ÌÖУ¬ÀûÓÃ×îС¶þ³Ë·¨Çó½â»Ø¹éϵÊý£¬¡à»Ø¹éÖ±Ïß²»Ò»¶¨¾¹ýÑù±¾Öеĵ㣬¹Ê¢Ú´íÎó£»
¶Ô¢Û£¬¸ù¾ÝÌسÆÃüÌâµÄ·ñ¶¨ÊÇÈ«³ÆÃüÌ⣬¡à¡°?x¡ÊR£¬x2+x+1£¼0¡±µÄ·ñ¶¨ÊÇ¡°?x¡ÊR£¬x2+x+1¡Ý0¡±£¬¡à¢ÛÕýÈ·£»
¶Ô¢Ü£¬´Ó¡°n=k¡±µ½¡°n=k+1¡±µÄÖ¤Ã÷ÖУ¬×ó±ßÐèÔö¼ÓÒòʽ
(k+1+k)(k+1+k+1) |
k+1 |
¹Ê´ð°¸ÊÇ¢Û¢Ü
µãÆÀ£º±¾Ìâ½èÖú¿¼²éÃüÌâµÄÕæ¼ÙÅжϣ¬¿¼²é»Ø¹é·ÖÎö»ù±¾Ë¼Ïë¡¢ÃüÌâµÄ·ñ¶¨¼°Êýѧ¹éÄÉ·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿