题目内容

【题目】设函数f(x)的导函数为f'(x),且满足 ,f(1)=e,则x>0时,f(x)(  )
A.有极大值,无极小值
B.有极小值,无极大值
C.既有极大值又有极小值
D.既无极大值也无极小值

【答案】D
【解析】解:∵f′(x)= =

令g(x)=ex﹣xf(x),

∴g′(x)=ex﹣(xf′(x)+f(x))

=ex(1﹣ ),

若x>1,则g′(x)>0,g(x)>g(1)=0,f(x)递增,

若0<x<1,则g′(x)<0,g(x)>g(1)=0,f(x)递增,

∴函数f(x)既无极大值又无极小值;

所以答案是:D.

【考点精析】解答此题的关键在于理解函数的极值与导数的相关知识,掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网