题目内容
(2012•自贡一模)己知数列{an}满足a1,an+1=
.
(I)求数列{an}的通项公式;
(II)记Sn=a1a2+a2a3+…+anan+1,求Sn.
an | 3an+1 |
(I)求数列{an}的通项公式;
(II)记Sn=a1a2+a2a3+…+anan+1,求Sn.
分析:(Ⅰ) 由an+1=
,得
-
=3,由此能求出数列{an}的通项公式.
(Ⅱ)由anan+1=
=(
-
)×
,利用裂项求和法能够求出Sn.
an |
3an+1 |
1 |
an+1 |
1 |
an |
(Ⅱ)由anan+1=
1 |
(3n-2)(3n+1) |
1 |
3n-2 |
1 |
3n+1 |
1 |
3 |
解答:解:(Ⅰ)由an+1=
,得
-
=3,(3分)
∴数列{
}是首项为1,公差为3的等差数列,
∴
=1+3(n-1)=3n-2,
即an=
.(6分)
(Ⅱ)∵anan+1=
=(
-
)×
,(9分)
∴Sn=
[(1-
)+(
-
)+(
-
)+…+(
-
)]
=
(1-
)=
.(12分)
an |
3an+1 |
1 |
an+1 |
1 |
an |
∴数列{
1 |
an |
∴
1 |
an |
即an=
1 |
3n-2 |
(Ⅱ)∵anan+1=
1 |
(3n-2)(3n+1) |
1 |
3n-2 |
1 |
3n+1 |
1 |
3 |
∴Sn=
1 |
3 |
1 |
4 |
1 |
4 |
1 |
7 |
1 |
7 |
1 |
10 |
1 |
3n-2 |
1 |
3n+1 |
=
1 |
3 |
1 |
3n+1 |
n |
3n+1 |
点评:本题考查数列的通项公式和前n项和公式的求法,解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目