题目内容

(2011•东城区一模)甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲面试合格的概率为
1
2
,乙、丙面试合格的概率都是
1
3
,且面试是否合格互不影响.
(Ⅰ)求至少有1人面试合格的概率;
(Ⅱ)求签约人数ξ的分布列和数学期望.
分析:(Ⅰ)用A,B,C分别表示事件甲、乙、丙面试合格.由题意知A,B,C相互独立,且P(A)=
1
2
,P(B)=P(C)=
1
3
.由至少有1人面试合格的概率是1-P(
.
A
.
B
.
C
),能求出至少有1人面试合格的概率.(Ⅱ)ξ的可能取值为0,1,2,3.分别求了P(ξ=0),P(ξ=1),P(ξ=2)和P(ξ=3),由此能求出ξ的分布列和ξ的期望Eξ.
解答:解:(Ⅰ)用A,B,C分别表示事件甲、乙、丙面试合格.
由题意知A,B,C相互独立,
P(A)=
1
2
,P(B)=P(C)=
1
3

至少有1人面试合格的概率是:
1-P(
.
A
.
B
.
C

=1-P(
.
A
) P(
.
B
) P(
.
C
)

=1-
1
2
×
2
3
×
2
3

=
7
9

(Ⅱ)ξ的可能取值为0,1,2,3.
P(ξ=0)=P(
.
A
B
.
C
)+P(
.
A
.
B
C
)+P(
.
A
.
B
 
.
C

=P(
.
A
)P(B)P(
.
C
)
+P(
.
A
) P(
.
B
) P(C)
+P(
.
A
)P(
.
B
) P(
.
C
)

=
1
2
×
1
3
×
2
3
+
1
2
×
2
3
×
1
3
+
1
2
×
2
3
×
2
3

=
4
9

P(ξ=1)=P(A
.
B
C)+P(AB
.
C
)+P(A
.
B
.
C
)

=P(A)P(
.
B
) P(C)
+P(A)P(B)P(
.
C
)
P(A)P(
.
B
) P(
.
C
)

=
1
2
×
2
3
×
1
3
+
1
2
×
1
3
×
2
3
+
1
2
×
2
3
×
2
3
=
4
9

P(ξ=2)=P(
.
A
BC)=
1
2
×
1
3
×
1
3
=
1
18

P(ξ=3)=P(ABC)=P(A)P(B)P(C)=
1
2
×
1
3
×
1
3
=
1
18

∴ξ的分布列是
 ξ  0  1  2  3
  P(ξ)   
4
9
  
4
9
 
1
18
 
1
18
故ξ的期望Eξ=
4
9
+1×
4
9
+2×
1
18
+3×
1
18
=
13
18
点评:本题考查离散型随机变量的分布列和数学期望,考查学生的运算能力,考查学生探究研究问题的能力,解题时要认真审题,理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,体现了化归的重要思想.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网