题目内容

设动点M(x,y)到直线y=3的距离与它到点F(0,1)的距离之比为
3
,点M的轨迹为曲线E.
(I)求曲线E的方程:
(II)过点F作直线l与曲线E交于A,B两点,且
AF
FB
.当2≤λ≤3时,求直线l斜率k的取值范围•
分析:(Ⅰ)利用动点M(x,y)到直线y=3的距离与它到点F(0,1)的距离之比为
3
,建立方程,可得曲线E的方程;
(Ⅱ)直线l方程为y=kx+1,代入曲线E方程,利用韦达定理及向量知识,可求直线l斜率k的取值范围.
解答:解:(Ⅰ)根据题意,∵动点M(x,y)到直线y=3的距离与它到点F(0,1)的距离之比为
3

∴|y-3|=
3
x2+(y-1)2

化简,得曲线E的方程为3x2+2y2=6.…(4分)
(Ⅱ)直线l方程为y=kx+1,代入曲线E方程,得(2k2+3)x2+4kx-4=0.…(6分)
设A(x1,y1),B(x2,y2),则x1+x2=-
4k
2k2+3
,①x1x2=-
4
2k2+3
.②
AF
FB
,∴(-x1,1-y1)=λ(x2,y2-1),
由此得x1=-λx2.③
由①②③,得
1
2
+
3
4k2
=
λ
(λ-1)2
=
1
(
λ
-
1
λ
)
2
.…(9分)
因为2≤λ≤3,所以
2
2
λ
-
1
λ
2
3
3
,从而
3
4
1
(
λ
-
1
λ
)2
≤2,
解不等式
3
4
1
2
+
3
4k2
≤2,得
1
2
≤k2≤3.
故k的取值范围是[-
3
,-
2
2
]∪[
2
2
3
].…(12分)
点评:本题考查轨迹方程,考查向量知识的运用,考查直线与曲线的位置关系,考查韦达定理的运用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网