题目内容
设函数f(x)=4x+cosx,{an}是公差为
的等差数列,f(a1)+f(a2)+…+f(a5)=10π,则[f(a3)]2-a1a5=( )
π |
8 |
分析:由f(x)=4x+cosx,又{an}是公差为
的等差数列,可求得f(a1)+f(a2)+…+f(a5)=20a3+cosa3(1+
+
),可求得a3=
从而可求得答案.
π |
8 |
2 |
2+
|
π |
2 |
解答:解:∵f(x)=4x+cosx,
∴f(a1)+f(a2)+…+f(a5)=4(a1+a2+…+a5)+(cosa1+cosa2+…+cosa5),
∵{an}是公差为
的等差数列,
∴a1+a2+…+a5=5a3,由和差化积公式可得:cosa1+cosa2+…+cosa5
=(cosa1+cosa5)+(cosa2+cosa4)+cosa3
=[cos(a3-
×2)+cos(a3+
×2)]+[cos(a3-
)+cos(a3+
)]+cosa3
=2cos
cos
+2cos
cos
+cosa3
=2cosa3•
+2cosa3•cos(-
)+cosa3
=cosa3(1+
+
),
∵f(a1)+f(a2)+…+f(a5)=10π,即20a3+cosa3(1+
+
)=10π,
∴cosa3=0,a3=
∴[f(a3)]2-a1a5=(2π)2-(
-
)(
+
)=
故选B
∴f(a1)+f(a2)+…+f(a5)=4(a1+a2+…+a5)+(cosa1+cosa2+…+cosa5),
∵{an}是公差为
π |
8 |
∴a1+a2+…+a5=5a3,由和差化积公式可得:cosa1+cosa2+…+cosa5
=(cosa1+cosa5)+(cosa2+cosa4)+cosa3
=[cos(a3-
π |
8 |
π |
8 |
π |
8 |
π |
8 |
=2cos
(a3-
| ||||
2 |
(a3-
| ||||
2 |
(a3-
| ||||
2 |
(a3-
| ||||
2 |
=2cosa3•
| ||
2 |
π |
8 |
=cosa3(1+
2 |
2+
|
∵f(a1)+f(a2)+…+f(a5)=10π,即20a3+cosa3(1+
2 |
2+
|
∴cosa3=0,a3=
π |
2 |
∴[f(a3)]2-a1a5=(2π)2-(
π |
2 |
π |
4 |
π |
2 |
π |
4 |
61π2 |
16 |
故选B
点评:本题考查数列与三角函数的综合应用,求得cosa3=0,a3=
是关键,也是难点,考查分析,推理与计算能力,属于难题.
π |
2 |
练习册系列答案
相关题目
设函数f(x)=
在点x=1处连续,则a等于( )
|
A、-
| ||
B、
| ||
C、-
| ||
D、
|