题目内容
已知Sn为数列{an}的前项和,且Sn=2an+n2-3n-2,n=1,2,3…
(Ⅰ)求证:数列{an-2n}为等比数列;
(Ⅱ)设bn=an•(-1)n,求数{bn}的n项和Pn;
(Ⅲ)设cn=
,数列{cn}的n项和为Tn,求证:Tn<
.
(Ⅰ)求证:数列{an-2n}为等比数列;
(Ⅱ)设bn=an•(-1)n,求数{bn}的n项和Pn;
(Ⅲ)设cn=
1 |
an-n |
37 |
44 |
分析:(I)将Sn=2an+n2-3n-2利用数列中an,Sn的关系进行转化构造出新数列{an-2n},再据其性质证明.
(Ⅱ)将(I)中所求的an代入bn,分组求和法求和.
(III)由于cn=
=
,从而得出:当n=1时,T1=
<
;当n≥时,Tn=
+
+
+…+
<
+
+
+…+
利用等比数列的求和公式结合放缩法即可得到证明.
(Ⅱ)将(I)中所求的an代入bn,分组求和法求和.
(III)由于cn=
1 |
an-n |
1 |
2n+n |
1 |
3 |
37 |
44 |
1 |
21+1 |
1 |
22+2 |
1 |
23+3 |
1 |
2n+n |
1 |
3 |
1 |
22 |
1 |
23 |
1 |
2n |
解答:解:(Ⅰ)∵Sn=2an+n2-3n-2
∴Sn+1=2an+1+(n+1)2-3(n+1)-2
∴an+1=2an-2n+2
∴an+1-2(n+1)=2(an-2n)
∴{an-2n}是以2为公比的等比数列.
(II)a1=S1=2a1-4,∴a1=4,∴a1-2×1=4-2=2
∴an-2n=2n,∴an=2n+2n …5分
当n为偶数时,
Pn=b1+b2+b3+…+bn=(b1+b3+…+bn-1)+(b2+b4+…+bn)
=-(2+2×1)-(23+2×3)-…-(2n-1+2(n-1)+(22+2×2)+(24+2×4)+…+(2n+2×n)
=
-
+n=
•(2n-1)+n …7分
当n为奇数时,
Pn=-
-(n+1)…9分
综上,Pn=
…10分
(III)cn=
=
,
当n=1时,T1=
<
;
当n≥时,Tn=
+
+
+…+
<
+
+
+…+
=
+
=
+
-
=
-
<
<
.
综上可知,任意n∈N*,Tn<
.…14分
∴Sn+1=2an+1+(n+1)2-3(n+1)-2
∴an+1=2an-2n+2
∴an+1-2(n+1)=2(an-2n)
∴{an-2n}是以2为公比的等比数列.
(II)a1=S1=2a1-4,∴a1=4,∴a1-2×1=4-2=2
∴an-2n=2n,∴an=2n+2n …5分
当n为偶数时,
Pn=b1+b2+b3+…+bn=(b1+b3+…+bn-1)+(b2+b4+…+bn)
=-(2+2×1)-(23+2×3)-…-(2n-1+2(n-1)+(22+2×2)+(24+2×4)+…+(2n+2×n)
=
4(1-2n) |
1-22 |
2(1-2n) |
1-22 |
2 |
3 |
当n为奇数时,
Pn=-
2n+1+2 |
3 |
综上,Pn=
|
(III)cn=
1 |
an-n |
1 |
2n+n |
当n=1时,T1=
1 |
3 |
37 |
44 |
当n≥时,Tn=
1 |
21+1 |
1 |
22+2 |
1 |
23+3 |
1 |
2n+n |
1 |
3 |
1 |
22 |
1 |
23 |
1 |
2n |
=
1 |
3 |
| ||||
1-
|
1 |
3 |
1 |
2 |
1 |
2n |
5 |
6 |
1 |
2n |
5 |
6 |
37 |
44 |
综上可知,任意n∈N*,Tn<
37 |
44 |
点评:本题考查等比数列的判断、数列求和,转化,计算的能力.
练习册系列答案
相关题目