ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÒÑÖªÖ±Ïßl1£ºy=2x+m£¨m£¼0£©ÓëÅ×ÎïÏßC1£ºy=ax2£¨a£¾0£©ºÍÔ²C2£ºx2+£¨y+1£©2=5¶¼ÏàÇУ¬FÊÇC1µÄ½¹µã£®£¨1£©ÇómÓëaµÄÖµ£»
£¨2£©ÉèAÊÇC1ÉϵÄÒ»¶¯µã£¬ÒÔAΪÇеã×÷Å×ÎïÏßC1µÄÇÐÏßl£¬Ö±Ïßl½»yÖáÓÚµãB£¬ÒÔFA£¬FBΪÁÚ±ß×÷ƽÐÐËıßÐÎFAMB£¬Ö¤Ã÷£ºµãMÔÚÒ»Ìõ¶¨Ö±ÏßÉÏ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬¼ÇµãMËùÔڵĶ¨Ö±ÏßΪl2£¬Ö±Ïßl2ÓëyÖá½»µãΪN£¬Á¬½ÓMF½»Å×ÎïÏßC1ÓÚP£¬QÁ½µã£¬Çó¡÷NPQµÄÃæ»ýSµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨1£©ÀûÓÃÔ²Ðĵ½Ö±ÏߵľàÀëµÈÓڰ뾶Çó³öm£¬ÔÙÀûÓõ¼º¯ÊýÓëÇÐÏߵĹØϵÇó³öaµÄÖµ¼´¿É£®
£¨2£©ÏÈÇó³öÒÔAΪÇеãµÄÇÐÏßlµÄ·½³ÌÒÔ¼°µãA£¬BµÄ±í´ïʽ£¬ÔÙÀûÓÃÒÔFA£¬FBΪÁÚ±ß×÷ƽÐÐËıßÐÎFAMB£¬½áºÏÏòÁ¿ÔËËã¼´¿ÉÇó³öµãMËùÔڵĶ¨Ö±Ïߣ®
£¨3£©ÉèÖ±ÏßMF£ºy=kx+
£¬´úÈëy=
x2µÃ£º
x2-kx-
=0£¬½áºÏ¸ùÓëϵÊýµÄ¹Øϵ¼°Èý½ÇÐÎÃæ»ý¹«Ê½µÃ³öÃæ»ýµÄ±í´ïʽ£¬×îºóÀûÓú¯Êý˼Ïë¼´¿ÉÇóµÃ¡÷NPQµÄÃæ»ýSµÄÈ¡Öµ·¶Î§£®
£¨2£©ÏÈÇó³öÒÔAΪÇеãµÄÇÐÏßlµÄ·½³ÌÒÔ¼°µãA£¬BµÄ±í´ïʽ£¬ÔÙÀûÓÃÒÔFA£¬FBΪÁÚ±ß×÷ƽÐÐËıßÐÎFAMB£¬½áºÏÏòÁ¿ÔËËã¼´¿ÉÇó³öµãMËùÔڵĶ¨Ö±Ïߣ®
£¨3£©ÉèÖ±ÏßMF£ºy=kx+
3 |
2 |
1 |
6 |
1 |
6 |
3 |
2 |
½â´ð£º½â£º£¨1£©ÓÉÒÑÖª£¬Ô²C2£ºx2+£¨y+1£©2=5µÄÔ²ÐÄΪC2£¨0£¬-1£©£¬°ë¾¶ r=
£®£¨1·Ö£©
ÓÉÌâÉèÔ²Ðĵ½Ö±Ïßl1£ºy=2x+mµÄ¾àÀë d=
£®£¨3·Ö£©
¼´
=
£¬
½âµÃm=-6£¨m=4ÉáÈ¥£©£®£¨4·Ö£©
Éèl1ÓëÅ×ÎïÏßµÄÏàÇеãΪA0£¨x0£¬y0£©£¬ÓÖy¡ä=2ax£¬£¨5·Ö£©
µÃ 2ax0=2?x0=
£¬y0=
£®£¨6·Ö£©
´úÈëÖ±Ïß·½³ÌµÃ£º
=
-6£¬¡àa=
ËùÒÔm=-6£¬a=
£®£¨7·Ö£©
£¨2£©ÓÉ£¨1£©ÖªÅ×ÎïÏßC1·½³ÌΪ y=
x2£¬½¹µã F(0£¬
)£®£¨8·Ö£©
Éè A(x1£¬
)£¬ÓÉ£¨1£©ÖªÒÔAΪÇеãµÄÇÐÏßlµÄ·½³ÌΪ y=
x1(x-x1)+
£®£¨10·Ö£©
Áîx=0£¬µÃÇÐÏßl½»yÖáµÄBµã×ø±êΪ (0£¬-
)£¨11·Ö£©
ËùÒÔ
=(x1£¬
-
)£¬
=(0£¬-
-
)£¬£¨12·Ö£©
¡à
=
+
=(x1£¬-3)£¨13·Ö£©
ÒòΪFÊǶ¨µã£¬ËùÒÔµãMÔÚ¶¨Ö±Ïß y=-
ÉÏ£®£¨14·Ö£©
£¨3£©ÉèÖ±ÏßMF£ºy=kx+
£¬´úÈëy=
x2µÃ£º
x2-kx-
=0£¬µÃx1+x2=6k£¬x1x2=-9£®
S¡÷NPQ=
|NF||x1-x2|=
¡Á3¡Á
=9
¡ßk¡Ù0£¬¡àS¡÷NPQ£¾9£¬
¡÷NPQµÄÃæ»ýSµÄÈ¡Öµ·¶Î§£¨9£¬+¡Þ£©£®
5 |
ÓÉÌâÉèÔ²Ðĵ½Ö±Ïßl1£ºy=2x+mµÄ¾àÀë d=
|1+m| | ||
|
¼´
|1+m| | ||
|
5 |
½âµÃm=-6£¨m=4ÉáÈ¥£©£®£¨4·Ö£©
Éèl1ÓëÅ×ÎïÏßµÄÏàÇеãΪA0£¨x0£¬y0£©£¬ÓÖy¡ä=2ax£¬£¨5·Ö£©
µÃ 2ax0=2?x0=
1 |
a |
1 |
a |
´úÈëÖ±Ïß·½³ÌµÃ£º
1 |
a |
2 |
a |
1 |
6 |
ËùÒÔm=-6£¬a=
1 |
6 |
£¨2£©ÓÉ£¨1£©ÖªÅ×ÎïÏßC1·½³ÌΪ y=
1 |
6 |
3 |
2 |
Éè A(x1£¬
1 |
6 |
x | 2 1 |
1 |
3 |
1 |
6 |
x | 2 1 |
Áîx=0£¬µÃÇÐÏßl½»yÖáµÄBµã×ø±êΪ (0£¬-
1 |
6 |
x | 2 1 |
ËùÒÔ
FA |
1 |
6 |
x | 2 1 |
3 |
2 |
FB |
1 |
6 |
x | 2 1 |
3 |
2 |
¡à
FM |
FA |
FB |
ÒòΪFÊǶ¨µã£¬ËùÒÔµãMÔÚ¶¨Ö±Ïß y=-
3 |
2 |
£¨3£©ÉèÖ±ÏßMF£ºy=kx+
3 |
2 |
1 |
6 |
1 |
6 |
3 |
2 |
S¡÷NPQ=
1 |
2 |
1 |
2 |
(x 1+x 2) 2 -4x 1x 2 |
1+k2 |
¡ßk¡Ù0£¬¡àS¡÷NPQ£¾9£¬
¡÷NPQµÄÃæ»ýSµÄÈ¡Öµ·¶Î§£¨9£¬+¡Þ£©£®
µãÆÀ£º±¾ÌâÊǶÔÔ²ÓëÍÖԲ֪ʶµÄ×ۺϿ¼²é£®µ±Ö±ÏßÓëÔ²ÏàÇÐʱ£¬¿ÉÒÔÀûÓÃÔ²Ðĵ½Ö±ÏߵľàÀëµÈÓڰ뾶Çó½â£®£¬Ò²¿ÉÒÔ°ÑÖ±ÏßÓëÔ²µÄ·½³ÌÁªÁ¢ÈöÔÓ¦·½³ÌµÄÅбðʽΪ0Çó½â£®±¾ÌâÓõÄÊǵÚÒ»ÖÖ
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿