题目内容

f(x)=
1-x2
1+x2
(x∈R)

(1)求证:f(
1
x
)=-f(x),(x≠0)

(2)求值:f(1)+f(2)+f(3)+…+f(2008)+f(
1
3
)+f(
1
4
)+f(
1
5
)+…+f(
1
2008
)
分析:(1)先把f(x)=
1-x2
1+x2
(x∈R)
中所有的x都换成
1
x
,得到f(
1
x
)
,然后进行整理能证出f(
1
x
)=-f(x),(x≠0)

(2)由f(
1
x
)+f(x)=0
f(1)+f(2)+f(3)++f(2008)+f(
1
3
)+f(
1
4
)+f(
1
5
)++f(
1
2008
)
.=f(1)+f(2),从而得到结果.
解答:解:(1)因为f(
1
x
)=
1-(
1
x
)
2
1+(
1
x
)
2
=
x2-1
x2+1
,f(x)=
1-x2
1+x2
,(4分)
所以f(
1
x
)=-f(x),(x≠0)
;(6分)
(2)由(1)知f(
1
x
)+f(x)=0
(3) (8分)
所以f(1)+f(2)+f(3)++f(2008)+f(
1
3
)+f(
1
4
)+f(
1
5
)++f(
1
2008
)

=f(1)+f(2)   (12分)
=0+
-3
5
=-
3
5
   (14分).
点评:本题考查函数值的求法,解题时要认真审题,仔细解答,注意函数性质的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网