题目内容

求值
(1)已知向量
a
=(3,4)
b
=(sinα,cosα)
a
b
,则
4sinα-2cosα
5cosα+3sinα
的值
(2)已知tan(α+
π
6
)=
1
2
,tan(β-
π
6
)=
1
3
,则tan(α+β)的值.
分析:(1)由向量
a
=(3,4)
b
=(sinα,cosα)
a
b
,知
sinα
cosα
=
3
4
,把
4sinα-2cosα
5cosα+3sinα
分子分母同时除以cosα,得到
4sinα
cosα
-2
5+
3sinα
cosα
,由此能求出结果.
(2)由tan(α+
π
6
)=
1
2
,tan(β-
π
6
)=
1
3
,和tan(α+β)=tan[(α+
π
6
)+(β-
π
6
)]
,利用正切加法定理能够求出tan(α+β)的值.
解答:解:(1)∵向量
a
=(3,4)
b
=(sinα,cosα)
a
b

3
sinα
=
4
cosα

sinα
cosα
=
3
4

4sinα-2cosα
5cosα+3sinα
=
4sinα
cosα
-2
5+
3sinα
cosα

=
3
4
-2
5+3×
3
4

=
4
29

(2)∵tan(α+
π
6
)=
1
2
,tan(β-
π
6
)=
1
3

∴tan(α+β)
=tan[(α+
π
6
)+(β-
π
6
)]

=
tan(α+
π
6
)+tan(β-
π
6
1-tan(α+
π
6
)tan(β- 
π
6
)

=
1
2
+
1
3
1-
1
2
×
1
3

=1.
点评:第(1)题考查平面向量平行的性质的应用,是基础题.解题时要认真审题,注意同角三角函数的性质的灵活运用.
第(2)题考查正切加法定理的应用,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网