题目内容

在平面几何里,有勾股定理:“设△ABC的两边AB,AC互相垂直,则|AB|2+|AC|2=|BC|2”拓展到空间,类比平面几何的勾股定理,“设三棱锥A-BCD的三个侧面ABC、ACD、ADB 两两相互垂直,则可得”( )
A.|AB|2+|AC|2+|AD|2=|BC|2+|CD|2+|BD|2
B.S2△ABC×S2△ACD×S2△ADB=S2△BCD
C.S△ABC2+S△ACD2+S△ADB2=S△BCD2
D.|AB|2×|AC|2×|AD|2=|BC|2×|CD|2×|BD|2
【答案】分析:斜边的平方等于两个直角边的平方和,可类比到空间就是斜面面积的平方等于三个直角面的面积的平方和,边对应着面.
解答:解:由边对应着面,
边长对应着面积,
由类比可得:
SBCD2=SABC2+SACD2+SADB2
故选C.
点评:本题考查了从平面类比到空间,属于基本类比推理.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网