题目内容

(本题满分14分)
设数列的前n项和为,且,其中p是不为零的常数.
(1)证明:数列是等比数列;
(2)当p=3时,若数列满足,求数列的通项公式.

(1)证:因为Sn=4an– p(nN*),则Sn – 1 = 4an – 1 – p(nN*n2),
所以当n2时,,整理得.        5分
由Sn=4an– p,令,得,解得
所以是首项为,公比为的等比数列.                        7分
(2)解:因为a1=1,则
,得 ,                9分
当n2时,由累加得

当n = 1时,上式也成立.                                       14分

解析

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网