题目内容
椭圆=1(a>b>0)的面积S=πab,当a=4,b=2时,计算椭圆面积的流程图如下图,则括号内应填入
P为椭圆=1(a>b>0)上一点,F1为它的一个焦点,求证:以PF1为直径的圆与以长轴为直径的圆相切.
椭圆+=1(a>b>0)的离心率是,则的最小值为( )
A. B.1 C. D.2
如图,已知椭圆=1(a>b>0)的离心率为,以该椭圆上的点和椭圆的左、右焦点F1、F2为顶点的三角形的周长为4(+1),一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.
(1)求椭圆和双曲线的标准方程;
(2)设直线PF1、PF2的斜率分别为k1、k2,证明:k1·k2=1;
(3)是否存在常数λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.
经过椭圆=1(a>b>0)的一个焦点和短轴端点的直线与原点的距离为,则该椭圆的离心率为
__________________.
已知点P(3,4)是椭圆+=1(a>b>0)上的一点,F1、F2是椭圆的两焦点,若PF1⊥PF2,试求:
(1)椭圆方程;
(2)△PF1F2的面积.