题目内容
已知数列{an}的首项a1=1,前n项之和Sn满足关系式:3tSn+1-(2t+3)Sn=3t(t>0,n∈N*).
(1)求证:数列{an}是等比数列;
(2)设数列{an}的公比为f(t),数列{bn}满足bn+1=f(
),(n∈N*),且b1=1.
(i)求数列{bn}的通项bn;
(ii)设Tn=b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1,求Tn.
(1)求证:数列{an}是等比数列;
(2)设数列{an}的公比为f(t),数列{bn}满足bn+1=f(
1 | bn |
(i)求数列{bn}的通项bn;
(ii)设Tn=b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1,求Tn.
分析:(1)由已知可得3tSn-(2t+3)Sn-1=3t(n≥2),两式相减可得数列an+1与an的递推关系并作商得
=
,再验证
=
即得证;
(2)由(1)求出f(t),把f(t)的解析式代入bn,得bn+1=
+bn,判断出{bn}是一个首项为1,公差为
的等差数列.进而根据等差数列的通项公式求得答案;
(3)把式子b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1化简,根据{bn}是等差数列,代入前n项和公式,注意公差的变化,再进行化简.
an+1 |
an |
2t+3 |
3t |
a2 |
a1 |
2t+3 |
3t |
(2)由(1)求出f(t),把f(t)的解析式代入bn,得bn+1=
2 |
3 |
2 |
3 |
(3)把式子b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1化简,根据{bn}是等差数列,代入前n项和公式,注意公差的变化,再进行化简.
解答:(1)证明:∵3tSn+1-(2t+3)Sn=3t,
∴3tSn-(2t+3)Sn-1=3t,(n≥2),
两式相减得3tan+1-(2t+3)an=0,
又∵t>0,∴
=
(n≥2),
当n=2时,3tS2-(2t+3)S1=3t,
即3t(a1+a2)-(2t+3)a1=3t,且a1=1,
得a2=
,则
=
,
即
=
对n≥1都成立,
∴{an}为以1为首项,
为公比的等比数列,
(2)解:由已知得,f(t)=
,
∴bn+1=f(
)=
=
=
+bn,
即bn+1-bn=
,
∴{bn}是一个首项为1,公差为
的等差数列,
则bn=1+(n-1)×
=
n+
,
(3)解:Tn=b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1?
=b2(b1-b3)+b4(b3-b5)+…+b2n(b2n-1-b2n+1)=-2d(b2+b4+…+b2n)
=-2×
(b2+b4+…+b2n)=-2×
[
n+
×
]
=-
n2-
n.
∴3tSn-(2t+3)Sn-1=3t,(n≥2),
两式相减得3tan+1-(2t+3)an=0,
又∵t>0,∴
an+1 |
an |
2t+3 |
3t |
当n=2时,3tS2-(2t+3)S1=3t,
即3t(a1+a2)-(2t+3)a1=3t,且a1=1,
得a2=
2t+3 |
3t |
a2 |
a1 |
2t+3 |
3t |
即
an+1 |
an |
2t+3 |
3t |
∴{an}为以1为首项,
2t+3 |
3t |
(2)解:由已知得,f(t)=
2t+3 |
3t |
∴bn+1=f(
1 |
bn |
| ||
|
2+3bn |
3 |
2 |
3 |
即bn+1-bn=
2 |
3 |
∴{bn}是一个首项为1,公差为
2 |
3 |
则bn=1+(n-1)×
2 |
3 |
2 |
3 |
1 |
3 |
(3)解:Tn=b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1?
=b2(b1-b3)+b4(b3-b5)+…+b2n(b2n-1-b2n+1)=-2d(b2+b4+…+b2n)
=-2×
2 |
3 |
2 |
3 |
5 |
3 |
n(n-1) |
2 |
4 |
3 |
=-
8 |
9 |
4 |
3 |
点评:本题考查了利用递推关系实现数列和与项的相互转化,进而求递推公式,再进行判断数列的特点,考查了等比数列的定义,等差数列的通项公式、前n项和公式的运用,数列的求和等问题,以及运算能力.
练习册系列答案
相关题目