ÌâÄ¿ÄÚÈÝ

ÒÑÖªÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÇÒÂú×ã2Sn=pan-2n£¬n¡ÊN*£¬ÆäÖг£Êýp£¾2£®
£¨1£©Ö¤Ã÷£ºÊýÁÐ{an+1}ΪµÈ±ÈÊýÁУ»
£¨2£©Èôa2=3£¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©¶ÔÓÚ£¨2£©ÖÐÊýÁÐ{an}£¬ÈôÊýÁÐ{bn}Âú×ãbn=log2£¨an+1£©£¨n¡ÊN*£©£¬ÔÚbkÓëbk+1Ö®¼ä²åÈë2k-1£¨k¡ÊN*£©¸ö2£¬µÃµ½Ò»¸öеÄÊýÁÐ{cn}£¬ÊÔÎÊ£ºÊÇ·ñ´æÔÚÕýÕûÊým£¬Ê¹µÃÊýÁÐ{cn}µÄÇ°mÏîµÄºÍTm=2011£¿Èç¹û´æÔÚ£¬Çó³ömµÄÖµ£»Èç¹û²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨1£©°ÑSnºÍSn+1Ïà¼õÕûÀíÇóµÃ2an+1=pan+1-pan-2£¬ÕûÀí³ö1+an+1=
p
p-2
£¨1+an£©£¬ÅжϳöÊýÁÐ{1+an}ÊÇÊ×ÏîΪ
2
p-2
+1£¬¹«±ÈΪ
p
p-2
µÄµÈ±ÈÊýÁУ¬Ö¤µÃÊýÁÐ{an+1}ΪµÈ±ÈÊýÁУ®
£¨2£©Ïȸù¾Ýa2=3Çó³öpµÄÖµ£¬È»ºóÀûÓõȱÈÊýÁÐÇó³öÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©ÏÈÇó³öbn£¬È»ºóÇó³öÊýÁÐCnÖУ¬bk£¨º¬bkÏǰµÄËùÓÐÏîµÄºÍ£¬µ±k=10ʱ£¬ÆäºÍÊÇ55+210-2=1077£¼2011£¬µ±k=11ʱ£¬ÆäºÍÊÇ66+211-2=2112£¾2011£¬ÓÖÒòΪ2011-1077=934=467¡Á2£¬ÊÇ2µÄ±¶Êý£¬ËùÒÔµ±m=10+£¨1+2+22++28£©+467=988ʱ£¬Tm=2011£¬ËùÒÔ´æÔÚm=988ʹµÃTm=2011£®
½â´ð£º½â£º£¨1£©¡ß2Sn=pan-2n£¬¡à2Sn+1=pan+1-2£¨n+1£©£¬¡à2an+1=pan+1-pan-2£¬
¡àan+1=
p
p-2
an+
2
p-2
£¬¡àan+1+1=
p
p-2
(an+1)
£¬
¡ß2a1=pa1-2£¬¡àa1=
2
p-2
£¾0
£¬¡àa1+1£¾0
¡à
an+1+1
an+1
=
p
p-2
¡Ù0
£¬¡àÊýÁÐ{an+1}ΪµÈ±ÈÊýÁУ®
£¨2£©ÓÉ£¨1£©Öªan+1=(
p
p-2
)
n
£¬¡àan=(
p
p-2
)
n
-1
£¨8·Ö£©
ÓÖ¡ßa2=3£¬¡à
p
p-2
¡Á
p
p-2
-1=3
£¬¡àp=4£¬¡àan=2n-1£¨10·Ö£©
£¨3£©ÓÉ£¨2£©µÃbn=log22n£¬¼´bn=n£¬£¨n¡ÊN*£©£¬
ÊýÁÐCnÖУ¬bk£¨º¬bkÏǰµÄËùÓÐÏîµÄºÍÊÇ£º(1+2+3+¡­+k)+(20+21+22+¡­+2k-2)¡Á2=
k(k+1)
2
+2k-2

µ±k=10ʱ£¬ÆäºÍÊÇ55+210-2=1077£¼2011
µ±k=11ʱ£¬ÆäºÍÊÇ66+211-2=2112£¾2011
ÓÖÒòΪ2011-1077=934=467¡Á2£¬ÊÇ2µÄ±¶Êý£¬
ËùÒÔµ±m=10+£¨1+2+22++28£©+467=988ʱ£¬Tm=2011£¬
ËùÒÔ´æÔÚm=988ʹµÃTm=2011£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÊýÁÐÓ뺯ÊýµÄ×ÛºÏÓ¦Óã¬Í¬Ê±¿¼²éÁ˵ȱÈÊýÁеÄͨÏʽ»¯¼òÇóÖµ£¬ÒÔ¼°´æÔÚÐÔÎÊÌ⣬ÊÇÒ»µÀ±È½ÏÄѵÄÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø