题目内容
设函数f(x)=的定义域为集合A,则集合A∩Z中元素的个数是 ▲ .
【解析】略
设函数f(x)=ax+,曲线y=f(x)在点M(,f())处的切线方程为2x-3y+2=0.
(1)求f(x)的解析式;
(2)求函数f(x)的单调递减区间;
(3)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值.
设函数f(x)=x2+ax+b(a,b∈R),若函数在点(1,f(1))处的切线为4x―y―16=0,数列{an}、{bn}定义:.
(1)求实数a、b的值;
(2)若将数列{bn}的前n项的和与积分别记为Sn、Tn.证明:对任意正整数n,为定值;证明:对任意正整数n,都有.
设函数f(x)=ax+(a,b∈Z),曲线y=f(x)在点(0,f(2))处的切线方程为y=3.
(Ⅰ)求f(x)的解析式:
(Ⅱ)证明:函数y=f(x)的图像是一个中心对称图形,并求其对称中心;
(Ⅲ)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,并求出此定值.
设函数f(x)=ax-,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y=12=0.
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值.
设函数f(x)=ax+ (a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方
程为y=3.
(2)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,
并求出此定值.