题目内容

已知圆和直线,直线都经过圆C外

定点A(1,0).

(Ⅰ)若直线与圆C相切,求直线的方程;

(Ⅱ)若直线与圆C相交于P,Q两点,与交于N点,且线段PQ的中点为M,

求证:为定值.

(1)(2)6


解析:

(Ⅰ)①若直线的斜率不存在,即直线是,符合题意.

②若直线斜率存在,设直线,即

由题意知,圆心(3,4)到已知直线的距离等于半径2,

即: ,解之得 

所求直线方程是

(Ⅱ)解法一:直线与圆相交,斜率必定存在,且不为0,

可设直线方程为

  得

再由 

∴     得

∴   

              为定值

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网