题目内容

椭圆的两个焦点F1、F2,点P在椭圆C上,且P F1⊥F1F2,| P F1|=,| P F2|=

(I)求椭圆C的方程;

(II)若直线L过圆x2+y2+4x-2y=0的圆心M交椭圆于A、B两点,且A、B关于点M对称,求直线L的方程。

 

【答案】

 (Ⅰ) =1. (Ⅱ) 8x-9y+25=0.

【解析】本试题主要考查了椭圆方程的求解直线与椭圆的位置关系的运用。

(1))因为点P在椭圆C上,所以,a=3.

在Rt△PF1F2中,故椭圆的半焦距c=,

从而b2=a2-c2=4,所以椭圆C的方程为=1.

(2)已知圆的方程为(x+2)2+(y-1)2=5,所以圆心M的坐标为(-2,1).

   设A,B的坐标分别为(x1,y1),(x2,y2).由题意x1x2

         ①        

点差法得到结论。

解法一:(Ⅰ)因为点P在椭圆C上,所以,a=3.

在Rt△PF1F2中,故椭圆的半焦距c=,

从而b2=a2-c2=4,所以椭圆C的方程为=1.

(Ⅱ)设A,B的坐标分别为(x1,y1)、(x2,y2).   由圆的方程为(x+2)2+(y-1)2=5,所以圆心M的坐标为(-2,1).   从而可设直线l的方程为   y=k(x+2)+1,

代入椭圆C的方程得  (4+9k2)x2+(36k2+18k)x+36k2+36k-27=0.

因为A,B关于点M对称.   所以   解得

所以直线l的方程为   即8x-9y+25=0.   (经检验,符合题意)

解法二:(Ⅰ)同解法一.

(Ⅱ)已知圆的方程为(x+2)2+(y-1)2=5,所以圆心M的坐标为(-2,1).

   设A,B的坐标分别为(x1,y1),(x2,y2).由题意x1x2

         ①        

由①-②得              ③

因为A、B关于点M对称,所以x1+ x2=-4, y1+ y2=2,

代入③得,即直线l的斜率为

所以直线l的方程为y-1=(x+2),即8x-9y+25=0.(经检验,所求直线方程符合题意.)

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网