题目内容

已知函数的图象过坐标原点O,且在点(﹣1,f(﹣1))处的切线的斜率是﹣5.
(1)求实数b,c的值; 
(2)求f(x)在区间[﹣1,2]上的最大值;
(3)对任意给定的正实数a,曲线y=f(x)上是否存在两点P、Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?说明理由.
解:(1)当x<1时,f(x)=﹣x3+x2+bx+c,则f'(x)=﹣3x2+2x+b. 依题意得:


解得b=c=0
(2)由(1)知,
①当﹣1≤x<1时,
令f'(x)=0得
当x变化时,f'(x),f(x)的变化情况如下表:

②当1≤x≤2时,f(x)=alnx.
当a≤0时,f(x)≤0,f(x)最大值为0;
当a>0时,f(x)在[1,2]上单调递增.
∴f(x)在[1,2]最大值为aln2.
综上,当aln2≤2时,即时,f(x)在区间[﹣1,2]上的最大值为2;
当aln2>2时,即时,f(x)在区间[﹣1,2]上的最大值为aln2.
(3)假设曲线y=f(x)上存在两点P、Q满足题设要求,则点P、Q只能在y轴两侧.
不妨设P(t,f(t))(t>0),则Q(﹣t,t3+t2),显然t≠1
∵△POQ是以O为直角顶点的直角三角形,

即﹣t2+f(t)(t3+t2)=0(*)
若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
若0<t<1,则f(t)=﹣t3+t2
代入(*)式得:﹣t2+(﹣t3+t2)(t3+t2)=0
即t4﹣t2+1=0,而此方程无解,因此t>1.
此时f(t)=alnt,代入(*)式得:
﹣t2+(alnt)(t3+t2)=0
(**)
令h(x)=(x+1)lnx(x≥1),则

∴h(x)在[1,+∞)上单调递增,
∵t>1
∴h(t)>h(1)=0,
∴h(t)的取值范围是(0,+∞).
∴对于a>0,方程(**)总有解,即方程(*)总有解.
练习册系列答案
相关题目

已知函数的图象过坐标原点O,且在点处的切线的斜率是.

(Ⅰ)求实数的值; 

(Ⅱ)求在区间上的最大值;

(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.

【解析】第一问当时,,则

依题意得:,即    解得

第二问当时,,令,结合导数和函数之间的关系得到单调性的判定,得到极值和最值

第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

(Ⅰ)当时,,则

依题意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①当时,,令

变化时,的变化情况如下表:

0

0

+

0

单调递减

极小值

单调递增

极大值

单调递减

。∴上的最大值为2.

②当时, .当时, ,最大值为0;

时, 上单调递增。∴最大值为

综上,当时,即时,在区间上的最大值为2;

时,即时,在区间上的最大值为

(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

,则代入(*)式得:

,而此方程无解,因此。此时

代入(*)式得:    即   (**)

 ,则

上单调递增,  ∵     ∴,∴的取值范围是

∴对于,方程(**)总有解,即方程(*)总有解。

因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上

 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网