题目内容
(本小题满分12分)已知椭圆C的中心在坐标原点,焦点在轴上,椭圆C上的点到焦点的距离的最大值为3,最小值为1.
(I)求椭圆C的标准方程;
(II)若直线与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点.求证:直线过定点,并求出该定点的坐标.
【答案】
(I)
(II) 直线过定点,定点坐标为
【解析】解:(I)由题意设椭圆的标准方程为
,
(II)设,由得
,
,.
以AB为直径的圆过椭圆的右顶点,
,,
,
,解得
,且满足.
当时,,直线过定点与已知矛盾;
当时,,直线过定点
综上可知,直线过定点,定点坐标为
练习册系列答案
相关题目