题目内容

已知函数f(x)是R上的增函数,A(0,-3),B(3,1)是其图象上的两点,那么不等式-3<f(x+1)<1的解集的补集是


  1. A.
    (-1,2)
  2. B.
    (1,4)
  3. C.
    (―∞,-1)∪[4,+∞)
  4. D.
    (―∞,-1]∪[2,+∞)
D
 f(0)<f(x+1)<f(3).根据f(x)为R上的增函数,可得0<x+1<3,解出x.解答:解:由题意知f(0)=-3,f(3)=1.-3<f(x+1)<1即f(0)<f(x+1)<f(3).又f(x)为R上的增函数,∴0<x+1<3.∴-1<x<2,所以不等式-3<f(x+1)<1的解集的补集是(―∞,-1]∪[2,+∞)故选D.
点评:本题考查函数的单调性的应用,以及绝对值不等式的解法,体现了转化的数学思想.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网