题目内容
设各项均为正数的数列{an}和{bn}满足5an,5bn,5an+1成等比数列,lgbn,lgan+1,lgbn+1成等差数列,且a1=1,b1=2,a2=3,求通项an、bn.分析:由等比中项、等差中项的性质得an+1=
递推出an=
(n≥2).
bn•bn+1 |
bn-1•bn |
解答:解:∵5an,5bn,5an+1成等比数列,
∴(5an)2=5bn•5an+1,即2bn=an+an+1.①
又∵lgbn,lgan+1,lgbn+1成等差数列,
∴2lgan+1=lgbn+lgbn+1,即an+12=bn•bn+1.②
由②及ai>0,bj>0(i、j∈N*)可得
an+1=
.③
∴an=
(n≥2).④
将③④代入①可得2bn=
+
(n≥2),
∴2
=
+
(n≥2).
∴数列{
}为等差数列.
∵b1=2,a2=3,a22=b1•b2,∴b2=
.
∴
=
+(n-1)(
-
)
=
(n+1)(n=1也成立).
∴bn=
.
∴an=
=
=
(n≥2).
又当n=1时,a1=1也成立.
∴an=
.
∴(5an)2=5bn•5an+1,即2bn=an+an+1.①
又∵lgbn,lgan+1,lgbn+1成等差数列,
∴2lgan+1=lgbn+lgbn+1,即an+12=bn•bn+1.②
由②及ai>0,bj>0(i、j∈N*)可得
an+1=
bn•bn+1 |
∴an=
bn-1bn |
将③④代入①可得2bn=
bn-1•bn |
bn•bn+1 |
∴2
bn |
bn-1 |
bn+1 |
∴数列{
bn |
∵b1=2,a2=3,a22=b1•b2,∴b2=
9 |
2 |
∴
bn |
2 |
|
2 |
=
1 | ||
|
∴bn=
(n+1)2 |
2 |
∴an=
bn-1•bn |
|
=
n(n+1) |
2 |
又当n=1时,a1=1也成立.
∴an=
n(n+1) |
2 |
点评:本题主要考查了直线与圆锥曲线的综合问题呢.解题过程中注意由Sn求an时要注意验证a1与S1是否一致.
练习册系列答案
相关题目