题目内容
设
=(cos(θ-
) ,sin(θ-
)) ,
=(2cos(θ+
),2sin(θ+
)).
(1)若向量(2t
+7
)与向量(
+t
)的夹角为锐角,求实数t的取值范围;
(2)当t在区间(0,1]上变化时,求向量2t
+
(m为常数,且m>0)的模的最小值.
| a |
| π |
| 6 |
| π |
| 6 |
| b |
| π |
| 6 |
| π |
| 6 |
(1)若向量(2t
| b |
| a |
| b |
| a |
(2)当t在区间(0,1]上变化时,求向量2t
| b |
| m |
| t |
| a |
分析:(1)由已知可求|
|,|
|,
•
,由夹角为锐角,代入(2t
+7
)•(
+t
)=2t|
2|+2t2
•
+7
•
+7t|
|2>0,解不等式可求t的范围,舍去2t
+7
=λ(
+t
)中t即可
(2)由(2b
+
)2=4t2|
|2+4m
•
+
|
|2=16t2+
+4m,结合y=16t2+
+4m,t∈(0,1]的单调性可求y的最小值
| a |
| b |
| a |
| b |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
(2)由(2b
| t |
| m |
| t |
| a |
| b |
| a |
| b |
| m2 |
| t2 |
| a |
| m2 |
| t2 |
| m2 |
| t2 |
解答:解:(1)由题设易得|
|=1,|
|=2,
•
=2cos[(θ-
)-(θ+
)]=2cos(-
π)=1
∴(2t
+7
)•(
+t
)=2t|
|2=2t|
|2+2t
•
+7
•
+7t|
| 2>0
整理可得,2t2+15t+7>0
∴t>-
或 t<-7
又当2t
+7
与b+t
共线时,不满足题意.
令2t
+7
=λ(
+t
)
则
∴t=±
∴t>-
或 t<-7,且t≠±
(6分)
(2)∵(2b
+
)2=4t2|
|2+4m
•
+
|
|2
=16t2+
+4m
令y=16t2+
+4m t∈(0,1]
∵y=16t2+
+4m≥8m+4m=12m
当且仅当t=
于是①当
∈(0,1] 即 0<m≤4时
当且仅当t=
时,ymin=12m.从而|2t
+
|=2
②当
>1 即m>4时
可证 y=16t2+
+4m在(0,1]为减函数
从而当t=1时,ymin=m2+4m+16
∴|2t
+
| min=
(6分)
| a |
| b |
| a |
| b |
| π |
| 6 |
| π |
| 6 |
| 1 |
| 3 |
∴(2t
| b |
| a |
| b |
| a |
| b |
| b |
| a |
| b |
| a |
| b |
| a |
整理可得,2t2+15t+7>0
∴t>-
| 1 |
| 2 |
又当2t
| b |
| a |
| a |
令2t
| b |
| a |
| b |
| a |
则
|
| ||
| 2 |
∴t>-
| 1 |
| 2 |
| ||
| 2 |
(2)∵(2b
| t |
| m |
| t |
| a |
| b |
| a |
| b |
| m2 |
| t2 |
| a |
=16t2+
| m2 |
| t2 |
令y=16t2+
| m2 |
| t2 |
∵y=16t2+
| m2 |
| t2 |
当且仅当t=
| ||
| 2 |
于是①当
| ||
| 2 |
当且仅当t=
| ||
| 2 |
| b |
| m |
| t |
| a |
| 3m |
②当
| ||
| 2 |
可证 y=16t2+
| m2 |
| t2 |
从而当t=1时,ymin=m2+4m+16
∴|2t
| b |
| m |
| t |
| a |
| m2+4m+16 |
点评:本题主要考查了向量的数量积的性质的综合应用,注意:向量
,
的夹角θ为锐角时,并不等价于
•
>0,一定要把向量同向的情况去掉,及函数的单调性在求解函数最值中的应用.
| a |
| b |
| a |
| b |
练习册系列答案
相关题目
设a=cos(
),b=sin(-380°),则( )
| 10π |
| 3 |
| A、a>0,b>0 |
| B、a>0,b<0 |
| C、a<0,b>0 |
| D、a<0,b<0 |