题目内容
有甲、乙2名老师和4名学生站成一排照相.
(1)甲、乙两名老师必须站在两端,共有多少种不同的排法?
(2)甲、乙两名老师必须相邻,共有多少种不同的排法?
(3)甲、乙两名老师不能相邻,共有多少种不同的排法?
(4)甲、乙两名老师之间必须站两名同学,共有多少种不同的排法?
(5)甲老师不能站在首位,乙老师不能站末位,共有多少种不同的排法?
(6)同学丙不能和甲、乙两名老师相邻,共有多少种不同的排法?(必须写出解析式再算出结果才能给分)
(1)甲、乙两名老师必须站在两端,共有多少种不同的排法?
(2)甲、乙两名老师必须相邻,共有多少种不同的排法?
(3)甲、乙两名老师不能相邻,共有多少种不同的排法?
(4)甲、乙两名老师之间必须站两名同学,共有多少种不同的排法?
(5)甲老师不能站在首位,乙老师不能站末位,共有多少种不同的排法?
(6)同学丙不能和甲、乙两名老师相邻,共有多少种不同的排法?(必须写出解析式再算出结果才能给分)
分析:(1)甲、乙两名老师必须站在两端,则甲和乙站在两端,4名学生在中间排列,共有A44A22种结果.
(2)甲、乙两名老师必须相邻,则可以把两名教师看做一个元素,同4名学生进行排列,注意教师之间还有一个排列
(3)两名教师不能相邻,可以先排列学生,有A44种结果,再在学生形成的5个空中排列两名教师,有A52种结果,根据分步计数原理知共有24×20种结果.
(4)甲、乙两名老师之间必须站两名同学,则从4名学生中选两个排列在教师之间,两名教师和2个学生组成一个元素同另外2个元素进行排列.
(5)分成两种情况甲站在右端有A55=120种结果,甲不在右端,甲有4种情况,乙也有4种结果,余下的4个人在四个位置全排列,共有4×4×A44=384种结果,相加得到结果.
(6)甲、乙都不与丙相邻,可用排除法计数,计算出甲乙两人至少有一人与丙相邻的种数,从总数中减去.
(2)甲、乙两名老师必须相邻,则可以把两名教师看做一个元素,同4名学生进行排列,注意教师之间还有一个排列
(3)两名教师不能相邻,可以先排列学生,有A44种结果,再在学生形成的5个空中排列两名教师,有A52种结果,根据分步计数原理知共有24×20种结果.
(4)甲、乙两名老师之间必须站两名同学,则从4名学生中选两个排列在教师之间,两名教师和2个学生组成一个元素同另外2个元素进行排列.
(5)分成两种情况甲站在右端有A55=120种结果,甲不在右端,甲有4种情况,乙也有4种结果,余下的4个人在四个位置全排列,共有4×4×A44=384种结果,相加得到结果.
(6)甲、乙都不与丙相邻,可用排除法计数,计算出甲乙两人至少有一人与丙相邻的种数,从总数中减去.
解答:解:(1)甲、乙两名老师必须站在两端,则甲和乙站在两端,4名学生在中间排列,共有A44A22=48种结果.
(2)甲、乙两名老师必须相邻,则可以把两名教师看做一个元素,
同4名学生进行排列,注意教师之间还有一个排列,共有A55A22=240种结果
(3)由题意知两名老师不能相邻,可以先排列学生,有A44=24种结果,
再在男生写出的5个空中排列两名老师,有A52=20种结果,
根据分步计数原理知共有24×20=480种结果
即两名老师不能相邻的排列方法有480种结果
(4)甲、乙两名老师之间必须站两名同学,则从4名学生中选两个排列在教师之间,两名教师和2个学生组成一个元素同另外2个元素进行排列,共有A42A22A33=144种结果.
(5)由题意知可以分成两种情况甲站在右端有A55=120种结果,
甲不在右端,甲有4种情况,乙也有4种结果,余下的4个人在四个位置全排列,共有4×4×A44=384种结果,
∴根据分步计数原理知共有120+384=504种结果.
(6)甲、乙都不与丙相邻排法种数可以从全排列种数中排除甲乙两人至少有一人与丙相邻的种数,
故有A66-2A22×A55+A22A44=288.
(2)甲、乙两名老师必须相邻,则可以把两名教师看做一个元素,
同4名学生进行排列,注意教师之间还有一个排列,共有A55A22=240种结果
(3)由题意知两名老师不能相邻,可以先排列学生,有A44=24种结果,
再在男生写出的5个空中排列两名老师,有A52=20种结果,
根据分步计数原理知共有24×20=480种结果
即两名老师不能相邻的排列方法有480种结果
(4)甲、乙两名老师之间必须站两名同学,则从4名学生中选两个排列在教师之间,两名教师和2个学生组成一个元素同另外2个元素进行排列,共有A42A22A33=144种结果.
(5)由题意知可以分成两种情况甲站在右端有A55=120种结果,
甲不在右端,甲有4种情况,乙也有4种结果,余下的4个人在四个位置全排列,共有4×4×A44=384种结果,
∴根据分步计数原理知共有120+384=504种结果.
(6)甲、乙都不与丙相邻排法种数可以从全排列种数中排除甲乙两人至少有一人与丙相邻的种数,
故有A66-2A22×A55+A22A44=288.
点评:本题考查排列组合的实际应用,本题解题的关键是不相邻问题采用插空法,相邻问题采用捆绑法,本题包括的情况比较多,是一个综合题目.
练习册系列答案
相关题目