题目内容
一个正方体截去两个角后所得几何体的正视图(又称主视图)、侧视图(又称左视图)如图所示,则其俯视图为( )
C
【解析】依题意可知该几何体的直观图如图所示,故其俯视图应为C.
已知集合A={x|x≥0},B={0,1,2},则( )
(A)A⊆B (B)B⊆A
(C)A∪B=B (D)A∩B=?
已知A(1,0,0),B(0,1,0),C(0,0,1),则平面ABC的一个单位法向量是( )
(A)(,,-) (B) (,-,) (C)(-,,) (D)(-,-,-)
下列命题中正确的个数是( )
①若直线a不在α内,则a∥α;
②若直线l上有无数个点不在平面α内,则l∥α;
③若l与平面α平行,则l与α内任何一条直线都没有公共点;
④平行于同一平面的两直线可以相交.
(A)1 (B)2 (C)3 (D)4
用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3cm,求圆台的母线长.
已知正方形ABCD的边长为2,AC∩BD=O.将正方形ABCD沿对角线BD折起,使AC=a,得到三棱锥A-BCD,如图所示.
(1)当a=2时,求证:AO⊥平面BCD.
(2)当二面角A-BD-C的大小为120°时,求二面角A-BC-D的正切值.
如图,平面ABCD⊥平面ABEF,四边形ABCD是正方形,四边形ABEF是矩形,且AF=AD=a,G是EF的中点,则GB与平面AGC所成角的正弦值为( )
(A) (B) (C) (D)
一个几何体的三视图如图所示,则这个几何体的体积为( )
(A) (B) (C)(1+) (D)
某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.
(1)sin213°+cos217°-sin 13°cos 17°.
(2)sin215°+cos215°-sin 15°cos 15°.
(3)sin218°+cos212°-sin 18°cos 12°.
(4)sin2(-18°)+cos248°-sin(-18°)cos 48°.
(5)sin2(-25°)+cos255°-sin(-25°)cos 55°.
①试从上述五个式子中选择一个,求出这个常数.
②根据①的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.