题目内容
(08年山东卷)满足,且的集合的个数是( )
A.1 B.2 C.3 D.4
【解析】本小题主要考查集合子集的概念及交集运算。集合中必含有,
则或
答案:B
(08年山东卷文)已知函数的图象如图所示,则满足的关系是( )
A. B.
C. D.
(08年山东卷文)设满足约束条件则的最大值为 .
(08年山东卷)(本小题满分12分)
将数列中的所有项按每一行比上一行多一项的规则排成如下数表:
记表中的第一列数构成的数列为,.为数列的前项和,且满足.
(Ⅰ)证明数列成等差数列,并求数列的通项公式;
(Ⅱ)上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当时,求上表中第行所有项的和.
(08年山东卷理)(本小题满分14分)
如图,设抛物线方程为x2=2py(p>0),M为 直线y=-2p上任意一点,过M引抛物线的切线,切点分别为A,B.
(Ⅰ)求证:A,M,B三点的横坐标成等差数列;
(Ⅱ)已知当M点的坐标为(2,-2p)时,,求此时抛物线的方程;
(Ⅲ)是否存在点M,使得点C关于直线AB的对称点D在抛物线上,其中,点C满足(O为坐标原点).若存在,求出所有适合题意的点M的坐标;若不存在,请说明理由.