题目内容

如图,直线AB与椭圆:
x2
a2
+
y2
b2
=1
(a>b>0)交于A,B两点,与x轴和y轴分别交于点P和点Q,点C是点A关于x轴的对称点,直线BC与x轴交于点R.
(1)若点P为(6,0),点Q为(0,3),点A,B恰好是线段QP的两个三等分点.
①求椭圆的方程;
②过坐标原点O引△ABC外接圆的切线,求切线长;
(2)当椭圆给定时,试探究OP•OR是否为定值?若是,请求出此定值;若不是,请说明理由.
分析:(1)①利用
QP
=3
QA
,点B为A、P中点,可得点A、B的坐标,代入椭圆方程,求得几何量,从而可求椭圆的方程;
②确定线段AB的中垂线方程,求得△ABC外接圆的圆心与半径,从而可求切线长;
(2)确定直线BC的方程,求得R的坐标,同理可求P的坐标,表示出OP•OQ,利用P、Q再椭圆上,即可求得结论.
解答:解:(1)①设点A(x,y),由题意知
QP
=3
QA
,则有(6,-3)=3(x,y-3),
解得x=2,y=2,即A(2,2),又点B为A、P中点,可得点B(4,1)…(2分)
4
a2
+
4
b2
=1
16
a2
+
1
b2
=1
,解得:a2=20,b2=5,∴椭圆的方程为
x2
20
+
y2
5
=1
…(5分)
②由点A(2,2),B(4,1)可求得线段AB的中垂线方程为y=2x-
9
2
,令y=0,得x=
9
4

设△ABC外接圆的圆心为M,半径为r,可知M(
9
4
,0),r=AM=
65
4
…(7分)
∴切线长为
OM2-r2
=1
…(9分)
(2)设点B(x0,y0),A(x1,y1),则C(x1,-y1).
所以直线BC的方程为y-y0=
y0+y1
x0-x1
(x-x0),
令y=0,得x=
x0y1+x1y0
y0+y1
,即点R(
x0y1+x1y0
y0+y1
,0),
同理P(
x1y0-x0y1
y0-y1
,0)…(13分)
∴OP•OR=|
x1y0-x0y1
y0-y1
||
x0y1+x1y0
y0+y1
|=
x12y02-x02y12
y02-y12

又∵
x02
a2
+
y02
b2
=1①
x12
a2
+
y12
b2
=1②
,∴①×
y
2
1
-②×
y
2
0
,两式相减得
x12y02-x02y12
a2
=
y
2
0
-
y
2
1

x12y02-x02y12
y02-y12
=a2

∴当椭圆给定时,OP•OR为定值a2…(16分)
点评:本题考查椭圆的标准方程,考查直线与圆的位置关系,考查点差法的运用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网