题目内容
已知椭圆的离心率为,其中左焦点(-2,0).
(1) 求椭圆C的方程;
(2) 若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上,求m的值.
【答案】
(1) ;(2)
【解析】
试题分析:(1)根据椭圆的基本性质列三个关于a,b,c的方程即可求出a,b。从而求出椭圆方程。(2)联立方程组消去y得到3x2+4mx+2m2-8=0,因为有两个交点,所以判别式大于0,解出m的范围,再由韦达定理得到两根之和,两根之积。根据中点坐标公式求出中点坐标,在将其代入圆的方程即可求出m.
试题解析: (1) 由题意,得 解得∴椭圆C的方程为
(2) 设点A、B的坐标分别为(x1,y1),(x2, y2),线段AB的中点为M(x0,y0),
由消y得,3x2+4mx+2m2-8=0,
Δ=96-8m2>0,∴-2<m<2.
∴
∵点M(x0,y0)在圆x2+y2=1上,] 所以,所以
考点:椭圆方程,直线与圆锥曲线的位置关系
练习册系列答案
相关题目
已知椭圆的离心率为e,两焦点分别为F1、F2,抛物线C以F1为顶点、F2为焦点,点P为抛物线和椭圆的一个交点,若e|PF2|=|PF1|,则e的值为( )
A、
| ||||
B、
| ||||
C、
| ||||
D、以上均不对 |
已知椭圆的离心率为
,焦点是(-3,0),(3,0),则椭圆方程为( )
1 |
2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|