题目内容
下面给出了关于复数的四种类比推理:①复数的加减法运算可以类比多项式的加减法运算法则;
②由向量a的性质|
a |
a |
③方程ax2+bx+c=0(a,b,c⊆R)有两个不同实数根的条件是b2-4ac>0可以类比得到:方程az2+bz+c=0(a,b,c⊆C)有两个不同复数根的条件是b2-4ac>0;
④由向量加法的几何意义可以类比得到复数加法的几何意义.
其中类比错误的是
分析:①复数的加减运算可以类比多项式的加减运算,由两者运算规则判断;
②由向量
的性质|
|2=
2类比复数z的性质|z|2=z2,由定义判断;
③方程ax2+bx+c=0(a,b,c∈R)有两个不同实数根的条件是b2-4ac>0,可以类比得到方程az2+bz+c=0(a,b,c∈C)有两个不同复数根的条件是b2-4ac>0,可有两者运算特征进行判断;
④由向量加法的几何意义可以类比得到复数加法的几何意义,由两者加法的几何意义判断;
②由向量
a |
a |
a |
③方程ax2+bx+c=0(a,b,c∈R)有两个不同实数根的条件是b2-4ac>0,可以类比得到方程az2+bz+c=0(a,b,c∈C)有两个不同复数根的条件是b2-4ac>0,可有两者运算特征进行判断;
④由向量加法的几何意义可以类比得到复数加法的几何意义,由两者加法的几何意义判断;
解答:解:①复数的加减运算可以类比多项式的加减运算,两者用的都是合并同类项的规则,可以类比;
②由向量
的性质|
|2=
2类比复数z的性质|z|2=z2;两者属性不同一个是数,一个是即有大小又有方向的量,不具有类比性,故错误;
③方程ax2+bx+c=0(a,b,c∈R)有两个不同实数根的条件是b2-4ac>0,可以类比得到方程az2+bz+c=0(a,b,c∈C)有两个不同复数根的条件是b2-4ac>0,数的概念推广后,原有的概念在新的领域里是不是成立属于知识应用的推广,不是类比,故合理错误;
④由向量加法的几何意义可以类比得到复数加法的几何意义,由两者的几何意义知,此类比正确;
综上,②③是错误的
故答案为:②③
②由向量
a |
a |
a |
③方程ax2+bx+c=0(a,b,c∈R)有两个不同实数根的条件是b2-4ac>0,可以类比得到方程az2+bz+c=0(a,b,c∈C)有两个不同复数根的条件是b2-4ac>0,数的概念推广后,原有的概念在新的领域里是不是成立属于知识应用的推广,不是类比,故合理错误;
④由向量加法的几何意义可以类比得到复数加法的几何意义,由两者的几何意义知,此类比正确;
综上,②③是错误的
故答案为:②③
点评:本题考查类比推理,解题的关键掌握并理解类比推理的定义,并能根据类比的定义鉴别所举的事例是否满足类比推理.
练习册系列答案
相关题目