题目内容
已知A.
B.
C.
D.
【答案】分析:把已知的等式左边利用两角和与差的正切函数公式及特殊角的三角函数值化简,可得关于tanα的方程,求出方程的解即可得到tanα的值.
解答:解:由tan(α-
)=
=
=
,
变形得:4(tanα-1)=1+tanα,
解得tanα=
.
故选C
点评:此题考查了两角和与差的正切函数公式,以及特殊角的三角函数值,熟练掌握公式,牢记特殊角的三角函数值是解本题的关键.
解答:解:由tan(α-
变形得:4(tanα-1)=1+tanα,
解得tanα=
故选C
点评:此题考查了两角和与差的正切函数公式,以及特殊角的三角函数值,熟练掌握公式,牢记特殊角的三角函数值是解本题的关键.
练习册系列答案
相关题目
已知
,则tanα的值为( )
|
| A. | ﹣ | B. |
| C. | ﹣ | D. | ﹣ |