题目内容

设Rt△ABC斜边AB上的高是CD,AC=BC=2,沿高CD作折痕将之折成直二面角A-CD-B(如图)那么得到二面角C-AB-D的余弦值等于(  )
分析:利用直角三角形的勾股定理求出AD,BD,CD的长度,取AB的中点E,连接CE,DE,判断出∠CED为二面角C-AB-D的平面角
,然后通过解直角三角形求出二面角的大小.
解答:解:因为Rt△ABC斜边AB上的高是CD,AC=BC=2,
所以CD⊥AD,CD⊥BD,AD=BD=
2
,CD=
所以CD⊥平面ABD
取AB的中点E,连接CE,DE,
因为AC=BC=2,所以CE⊥AB,DE⊥AB                                                         
所以∠CED为二面角C-AB-D的平面角
在△ADB中,DE=
2
×
2
2
=1
,CE=
CD2+DE2
=
2+1
 =
3

在Rt△CDE中,cos∠CED=
DE
CE
=
1
3
=
3
3

故选B.
点评:本题考查求二面角的大小,一般先找出平面角,再证明,再解三角形,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网