题目内容

已知椭圆
x24
+y2=1

(1)过椭圆上点P作x轴的垂线PD,D为垂足,当点P在椭圆上运动时,求线段PD中点M的轨迹方程;
(2)若直线x-y+m=0与已知椭圆交于A、B两点,R(0,1),且|RA|=|RB|,求实数m的值.
分析:(1)确定P、M坐标之间的关系,利用点P在椭圆上,即可求得线段PD中点M的轨迹E的方程;
(2)直线方程与椭圆方程联立,利用韦达定理确定AB的中点坐标,利用R(0,1),且|RA|=|RB|,可得斜率之间的关系,从而可得结论.
解答:解:(1)设PD中点M(x,y),P(x′,y′),依题意x=x′,y=
y′
2

∴x′=x,y′=2y
又点P在
x2
4
+y2=1
上,∴
x′2
4
+y′2=1
,即
x2
4
+4y2=1

∴线段PD的中点M轨迹方程为
x2
4
+4y2=1

(2)设A(x1,y1),B(x2,y2),则
直线x-y+m=0与已知椭圆方程联立,消去y可得
5
4
x2+2mx+m2-1=0

∴x1+x2=-
8m
5

∴y1+y2=x1+x2+2m=
2m
5

∴AB的中点坐标为(-
4m
5
m
5

∵R(0,1),且|RA|=|RB|,
m
5
-1
-
4
5
m
×1=-1

m=-
5
3
点评:本题考查轨迹方程的求法,考查直线与椭圆的位置关系,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网