题目内容
(08年黄冈中学一模)命题p:|x|<1,命题q:,则是成立的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
答案:B
(08年黄冈中学一模理) (本小题满分12分)一个袋子中装有m个红球和n个白球(m>n≥4),它们除颜色不同外,其余都相同,现从中任取两个球.
(1)若取出两个红球的概率等于取出一红一白两个球的概率的整数倍,求证:m必为奇数;
(08年黄冈中学一模理) (本小题满分12分)已知A、B、C为的三个内角,向量,且
(1)求的值;
(2)求C的最大值,并判断此时的形状.
(08年黄冈中学一模理) (本小题满分14分)对于函数f(x),若存在,使成立,则称x0为f(x)的不动点. 如果函数有且仅有两个不动点0,2,且
(1)试求函数f(x)的单调区间;
(2)已知各项不为零且不为1的数列{an}满足,求证:;
(3)设,为数列{bn}的前n项和,求证:
(08年黄冈中学一模文) (12分) 如图,在梯形ABCD中,AB∥CD,AD=DC=CB=a , ∠ABC=60°.平面ACEF⊥平面ABCD,且四边形ACEF是矩形,AF=a.
(I)求证:AC⊥BE;
(II)求二面角B-EF-D的余弦值.
(08年黄冈中学一模文) (14分)已知椭圆过定点A(1,0),焦点在x轴上,且离心率e满足.
(I)求的取值范围;
(II)若椭圆与的交于点B,求点B的横坐标的取值范围;
(Ⅲ)在条件(II)下,现有以A为焦点,过点B且开口向左的抛物线,抛物线的顶点坐标为M(m,0),求实数m的取值范围.