题目内容
如图,抛物线C1:y2=4x和圆C2:(x-1)2+y2=1,直线l经过C1的焦点F,依次交C1,C2于A,B,C,D四点,则·的值是 .
1
解析
在平面直角坐标系xOy中,抛物线y2=4x的焦点为F,点P在抛物线上,若PF=2,则点P到抛物线顶点O的距离是 .
双曲线的离心率为
双曲线的焦点坐标是_____________ .
已知圆C:x2+y2+6x+8y+21=0,抛物线y2=8x的准线为l,设抛物线上任意一点P到直线l的距离为m,则m+|PC|的最小值为________.
过抛物线y2=2px(p>0)上一定点P(x0,y0)(y0>0)作两直线分别交抛物线于A(x1,y1),B(x2,y2),当PA与PB的斜率存在且倾斜角互补时,的值为 .
已知双曲线-=1的右焦点的坐标为(,0),则该双曲线的渐近线方程为_______.
在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为.过F1的直线l交C于A,B两点,且△ABF2的周长为16,那么C的方程为________.
已知A、B是椭圆=1(a>b>0)和双曲线=1(a>0,b>0)的公共顶点.P是双曲线上的动点,M是椭圆上的动点(P、M都异于A、B),且满足+=λ(+),其中λ∈R,设直线AP、BP、AM、BM的斜率分别记为k1、k2、k3、k4,k1+k2=5,则k3+k4=________.