题目内容
已知向量a |
b |
c |
0 |
a |
b |
a |
b |
c |
|a| |
|b| |
|b| |
|c| |
|c| |
|a| |
分析:由
+
+
=
及(
-
⊥
,可得|
| =|
|,
+
+
=
及
⊥
可得
2+
2 =
2,代入可求
a |
b |
c |
0 |
a |
b) |
c |
a |
b |
a |
b |
c |
0 |
a |
b |
a |
b |
c |
解答:解:∵
+
+
=
∴
+
= -
∵(
-
)⊥
∴(
-
)•
= (
-
)•(-
-
)=0即|
|=|
|
∵
+
+
=
∴(
+
+
) 2=
2+
2+
2+2
•
+2
•
+2
•
=0
(
-
)•
=0
∴
2 +
2+
2+2
•(
+
)=0?
2+
2 +
2 +2
•(-
)=0
∴
2+
2=
2
∴M=
|+
+
=1+
+
=
+1
故答案为:1+
a |
b |
c |
0 |
a |
b |
c |
∵(
a |
b |
c |
a |
b |
c |
a |
b |
a |
b |
a |
b |
∵
a |
b |
c |
0 |
a |
b |
c |
a |
b |
c |
a |
b |
a |
c |
b |
c |
(
a |
b |
c |
∴
a |
b |
c |
c |
a |
b |
a |
b |
c |
c |
c |
∴
a |
b |
c |
∴M=
|
| ||
|
|
|
| ||
|
|
|
| ||
|
|
| ||
|
2 |
3
| ||
2 |
故答案为:1+
3
| ||
2 |
点评:本题主要本题考查平面向量的基本运算性质,数量积的运算性质,考查向量问题的基本解法,属于知识的综合运用.
练习册系列答案
相关题目