题目内容
数列{an}中,a1=3,Sn为其前n项的和,满足Sn=Sn-1+an-1+2n-1(n≥2),令bn=1 |
anan+1 |
(1)写出数列{an}的前四项,并求数列{an}的通项公式
(2)若f(x)=2x-1,求和:b1f(1)+b2f•(2)+…+bnf(n)
(3)设cn=
n |
an |
分析:(1)数列的前四项:a1=3,a2=5,a3=9,a4=17,Sn=Sn-1+an-1+2n-1(n≥2)?an=an-1+2n-1(n≥2),由此能求出an.
(2)由bnf(n)=
=
(
-
),入手,能求出b1f(1)+b2f•(2)+…+bnf(n)
的值.
(3)由cn=
<
,得Qn=
+
+…+
<
+
+…+
,令Tn=
+
+
+…+
,则
Tn=
+
+
+…+
,再由错位相减法进行求解.
(2)由bnf(n)=
2n-1 |
(2n+1)(2n+1+1) |
1 |
2 |
1 |
2n+1 |
1 |
2n+1+1 |
的值.
(3)由cn=
n |
2n-1 |
n |
2n |
1 |
2+1 |
1 |
22+1 |
1 |
2n+1 |
1 |
2 |
2 |
22 |
n |
2n |
1 |
2 |
2 |
22 |
3 |
23 |
n |
2n |
1 |
2 |
1 |
22 |
2 |
23 |
3 |
24 |
n |
2n+1 |
解答:解:(1)数列的前四项:a1=3,a2=5,a3=9,a4=17(2分)
Sn=Sn-1+an-1+2n-1(n≥2)?an=an-1+2n-1(n≥2)(3分)
当n≥2时,an=(an-an-1)+•+(a2-a1)+a1=2n-1••+2n-2++22+2•+3=2n+1
经验证a1也符合,所以an=2n.+1(5分)
(2)bnf(n)=
=
(
-
),(7分)
∴b1f(1)+b2f(•2)+…+bnf(n)=
(
-
)+
(
-
)+
(
-
)+…+
(
-
)=
(
-
)=
-
(9分)
(3)由cn=
<
得Qn=
+
+…+
<
+
+…+
(11分)
令Tn=
+
+
+…+
则
Tn=
+
+
+…+
,
相减,得
Tn=
+
+
+…+
-
=
-
=1-
-
所以Tn=2-
所以Qn<
+
+…+
=2-
<2(14分)
Sn=Sn-1+an-1+2n-1(n≥2)?an=an-1+2n-1(n≥2)(3分)
当n≥2时,an=(an-an-1)+•+(a2-a1)+a1=2n-1••+2n-2++22+2•+3=2n+1
经验证a1也符合,所以an=2n.+1(5分)
(2)bnf(n)=
2n-1 |
(2n+1)(2n+1+1) |
1 |
2 |
1 |
2n+1 |
1 |
2n+1+1 |
∴b1f(1)+b2f(•2)+…+bnf(n)=
1 |
2 |
1 |
2+1 |
1 |
22+1 |
1 |
2 |
1 |
22+1 |
1 |
23+1 |
1 |
2 |
1 |
23+1 |
1 |
24+1 |
1 |
2 |
1 |
2n+1 |
1 |
2n+1+1 |
1 |
2 |
1 |
2+1 |
1 |
2n+1+1 |
1 |
6 |
1 |
2n+2+2 |
(3)由cn=
n |
2n-1 |
n |
2n |
得Qn=
1 |
2+1 |
1 |
22+1 |
1 |
2n+1 |
1 |
2 |
2 |
22 |
n |
2n |
令Tn=
1 |
2 |
2 |
22 |
3 |
23 |
n |
2n |
则
1 |
2 |
1 |
22 |
2 |
23 |
3 |
24 |
n |
2n+1 |
相减,得
1 |
2 |
1 |
2 |
1 |
22 |
1 |
23 |
1 |
2n |
n |
2n+1 |
| ||||
1-
|
n |
2n+1 |
1 |
2n |
n |
2n+1 |
所以Tn=2-
n+2 |
2n |
所以Qn<
1 |
2 |
2 |
23 |
n |
2n |
n+2 |
2n |
点评:本题考查数列知识的综合运用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目
数列{an}中,a1=
,an+an+1=
,n∈N*,则
(a1+a2+…+an)等于( )
1 |
5 |
6 |
5n+1 |
lim |
n→∞ |
A、
| ||
B、
| ||
C、
| ||
D、
|