题目内容

在△ABC中,角A,B,C的对边分别为a,b,c,已知cosA=
4
5
,b=5c.
(1)求sinC的值;
(2)求sin(2A+C)的值;
(3)若△ABC的面积S=
3
2
sinBsinC
,求a的值.
分析:(1)利用余弦定理可求的a=3
2
c
,进而根据cosA求得sinA,利用正弦定理即可求得sinC.
(2)根据(1)中的sinC求得cosC,进而利用倍角公式求得sin2A和cos2A,代入sin(2A+C)=sin2AcosC+cos2AsinC求得答案.
(3)根据b和c的关系,进而求得sinB和sinC的关系,把sinC代入面积公式求得三角形的面积,进而利用三角形面积公式求得
1
2
bcsinA
=S,求得a.
解答:解:(1)∵a2=b2+c2-2bccosA=26c2-10c2×
4
5
=18c2
a=3
2
c

cosA=
4
5
,0<A<π,∴sinA=
3
5

a
sinA
=
c
sinC

sinC=
csinA
a
=
3
5
3
2
c
=
2
10

(2)∵c<a,∴C为锐角,
cosC=
1-sin2C
=
7
2
10

sin2A=2sinAcosA=2×
3
5
×
4
5
=
24
25

cos2A=2cos2A-1=2×
16
25
-1=
7
25

∴sin(2A+C)=sin2AcosC+cos2AsinC
=
24
25
×
7
2
10
+
7
25
×
2
10
=
7
2
10

(3)∵b=5c,∴
sinB
sinC
=
b
c
=5
,sinB=5sinC.
3
2
sinBsinC=
15
2
sin2C=
3
20

又∵S=
1
2
bcsinA=
3
2
c2=
a2
12

a2
12
=
3
20

a=
3
5
5
点评:本题主要考查了正弦定理和余弦定理的应用.涉及了三角形面积公式,三角函数中基本公式,考查了学生对知识的综合把握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网