题目内容
棱长为的正四面体内切一球,然后在正四面体和该球形成的空隙处各放入一小球,则这些球的最大半径为( )
A. | B. | C. | D. |
C
解析
练习册系列答案
相关题目
如图,正方体中,分别为棱的中点,在平面内且与平面平行的直线( )
A.不存在 | B.有1条 |
C.有2条 | D.有无数条 |
已知正方体的外接球的体积是,那么正方体的棱长等于( )
A. | B. | C. | D. |
某几何体的三视图及尺寸如图示,则该几何体的表面积为
A. | B. | C. | D. |
某三棱锥的三视图如图所示,该三棱锥的表面积是( )
A. | B. |
C. | D. |
一个几何体的三视图如图所示,则该几何体的体积为( )
A.12 | B.11 | C. | D. |
一个空间几何体的三视图如图所示,则该几何体的表面积为 ( )
A.48 | B. |
C. | D.80 |
已知三棱锥中,底面为边长等于2的等边三角形,垂直于底面,=1,那么直线与平面所成角的正弦值为
A. | B. | C. | D. |