题目内容

精英家教网已知f(x)=
2
3
x3-2x2+cx+4
,g(x)=ex-e2-x+f(x),
(1)若f(x)在x=1+
2
处取得极值,试求c的值和f(x)的单调增区间;
(2)如图所示,若函数y=f(x)的图象在[a,b]连续光滑,试猜想拉格朗日中值定理:即一定存在c∈(a,b),使得f(c)=
f(b)-f(a)
b-a
,利用这条性质证明:函数y=g(x)图象上任意两点的连线斜率不小于2e-4.
分析:(1)先求f′(x)由f(1+
2
)=0
,求得c,再用f′(x)>0求得增区间.
(2)先化简g(x)=ex-e2-x+f(x)═ex-e2-x+
2
3
x3-2x2-2x+4
,则g′(x)=ex+
e2
ex
+2(x-1)2-4
≥2
ex
e2
ex
+2•0-4=2e-4.
由猜想知对于函数y=g(x)图象上任意两点A、B,在A、B之间一定存在一点C(c,g′(c)),有g′(x)≥2e-4.
解答:解:(1)f′(x)=2x2-4x+c,(1分)
依题意,有f(1+
2
)=0
,即c=-2(1+
2
)2+4(1+
2
)=-2
.(2分)
f(x)=
2
3
x3-2x2-2x+4
,f′(x)=2x2-4x-2.
令f′(x)>0,得x<1-
2
x>1+
2
,(5分)
从而f(x)的单调增区间为:(-∞,1-
2
]
[1+
2
,+∞)
;(6分)
(2)f(c)=
f(b)-f(a)
b-a
;g(x)=ex-e2-x+f(x)═ex-e2-x+
2
3
x3-2x2-2x+4
,(7分)
g′(x)=ex+e2-x+2x2-4x-2(9分)=ex+
e2
ex
+2(x-1)2-4
≥2
ex
e2
ex
+2•0-4=2e-4.
(12分)
由(2)知,对于函数y=g(x)图象上任意两点A、B,在A、B之间一定存在一点C(c,g′(c)),使得g′(c)=KAB,又g′(x)≥2e-4,故有KAB=g′(c)≥2e-4,证毕.(14分)
点评:本题主要考查导数问题一是用导数研究函数的单调性二是考查导数的几何意义.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网