题目内容
如图,在平面直角坐标系xOy中,椭圆C:x2 |
a2 |
y2 |
b2 |
2 |
3 |
9 |
2 |
(1)求椭圆C的标准方程;
(2)设直线PA的斜率为k1,直线MA的斜率为k2,求k1•k2的取值范围.
分析:(1)由已知解得
.由此可知椭圆C的标准方程为
+
=1.
(2)设点P(x1,y1)(-2<x1<3),点M(
,y2),由点F、P、M三点共线,知点M(
,
).k1•k2=
×
=
.由此可导出k1•k2的取值范围是(-∞,-
).
|
x2 |
9 |
y2 |
5 |
(2)设点P(x1,y1)(-2<x1<3),点M(
9 |
2 |
9 |
2 |
13y1 |
2(x1+2) |
y1 |
x1-3 |
13y1 |
3(x1+2) |
13y12 |
3(x1+2)(x1-3) |
26 |
9 |
解答:解:(1)由已知,得
(2分)
解得
∴
(4分)
∴椭圆C的标准方程为
+
=1;(6分)
(2)设点P(x1,y1)(-2<x1<3),
点M(
,y2),∵点F、P、M三点共线,x1≠-2,
∴
=
,y2=
,∴点M(
,
).(8分)
∵k1=
,k2=
,
∴k1•k2=
×
=
.(10分)
∵点P在椭圆C上,∴
+
=1,∴y12=-
(x12-9).
∴k1•k2=
=-
×
=-
×(1+
).(12分)
∵-2<x1<3,∴k1•k2<-
.∴k1•k2的取值范围是(-∞,-
).(14分)
|
解得
|
|
∴椭圆C的标准方程为
x2 |
9 |
y2 |
5 |
(2)设点P(x1,y1)(-2<x1<3),
点M(
9 |
2 |
∴
y1 |
x1+2 |
y2 | ||
|
13y1 |
2(x1+2) |
9 |
2 |
13y1 |
2(x1+2) |
∵k1=
y1 |
x1-3 |
13y1 |
3(x1+2) |
∴k1•k2=
y1 |
x1-3 |
13y1 |
3(x1+2) |
13y12 |
3(x1+2)(x1-3) |
∵点P在椭圆C上,∴
x12 |
9 |
y12 |
5 |
5 |
9 |
∴k1•k2=
13×(-
| ||
3(x1+2)(x1-3) |
65 |
27 |
x1+3 |
x1+2 |
65 |
27 |
1 |
x1+2 |
∵-2<x1<3,∴k1•k2<-
26 |
9 |
26 |
9 |
点评:本题考查直线的圆锥曲线的位置关系,解题时要认真审题,仔细解答.
练习册系列答案
相关题目
如图,在直角坐标平面内有一个边长为a、中心在原点O的正六边形ABCDEF,AB∥Ox.直线L:y=kx+t(k为常数)与正六边形交于M、N两点,记△OMN的面积为S,则函数S=f(t)的奇偶性为( )
A、偶函数 | B、奇函数 | C、不是奇函数,也不是偶函数 | D、奇偶性与k有关 |